Skip to main content

Advertisement

Log in

Understanding interactive processes: a review of CO2 flux, evapotranspiration, and energy partitioning under stressful conditions in dry forest and agricultural environments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Arid and semiarid environments are characterized by low water availability (e.g., in soil and atmosphere), high air temperature, and irregularity in the spatio-temporal distribution of rainfall. In addition to the economic and environmental consequences, drought also causes physiological damage to crops and compromises their survival in ecosystems. The removal of vegetation is responsible for altering the energy exchange of heat and water in natural ecosystems and agricultural areas. The fluxes of CO2 are also changed, and environments with characteristics of sinks, which can be sources of CO2 after anthropic disturbances. These changes can be measured through methods such as sap flow, eddy covariance, remote sensing, and energy balance. Despite the relevance of each method mentioned above, there are limitations in their applications that must be respected. Thus, this review aims to quantify the processes and changes of energy fluxes, CO2, and their interactions with the surfaces of terrestrial ecosystems in dry environments. Studies report that the use of methods that integrate data from climate monitoring towers and remote sensing products helps to improve the accuracy of the determination of energy fluxes on a global scale, also helping to reduce the dissimilarity of results obtained individually. Through the collection of works in the literature, it is reported that several areas of the Brazilian Caatinga biome, which is a Seasonally Dry Tropical Forest have been suffering from changes in land use and land cover. Similar fluxes of sensible heat in areas with cacti and Caatinga can be observed in studies. On the other hand, one of the variables influenced mainly by air temperature is net radiation. In dry forest areas, woody species can store large amounts of carbon in their biomass above and belowground. The use of cacti can modify the local carbon budget when using tree crops together. Therefore, the study highlights the complexity and severity of land degradation and changes in CO2, water, and energy fluxes in dry environments with areas of forest, grassland, and cacti. Vegetation energy balance is also a critical factor, as these simulations are helpful for use in forecasting weather or climate change. We also highlight the need for more studies that address environmental conservation techniques and cactus in the conservation of degraded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acevedo, E., Badilla, I., & Nobel, P. S. (1983). Water relations, diurnal acidity changes, and productivity of a cultivated cactus Opuntia Ficus-Indica. Plant Physiology, 72(3), 775–780. https://doi.org/10.1104/PP.72.3.775

    Article  CAS  Google Scholar 

  • Ahirwal, J., Kumari, S., Singh, A. K., Kumar, A., & Maiti, S. K. (2021). Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecological Indicators, 123, 107354. https://doi.org/10.1016/J.ECOLIND.2021.107354

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. In Food and Agriculture Organization of the United Nations (Issue 56). http://www.fao.org/docrep/X0490E/x0490e00.htm#Contents

  • Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M. H., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011–4027. https://doi.org/10.1002/HYP.8408

    Article  Google Scholar 

  • Andreu-Coll, L., Cano-Lamadrid, M., Noguera-Artiaga, L., Lipan, L., Carbonell-Barrachina, Á. A., Rocamora-Montiel, B., Legua, P., Hernández, F., & López-Lluch, D. (2020). Economic estimation of cactus pear production and its feasibility in Spain. Trends in Food Science & Technology, 103, 379–385. https://doi.org/10.1016/J.TIFS.2020.07.003

    Article  CAS  Google Scholar 

  • Antongiovanni, M., Venticinque, E. M., Matsumoto, M., & Fonseca, C. R. (2020). Chronic anthropogenic disturbance on Caatinga dry forest fragments. Journal of Applied Ecology, 57(10), 2064–2074. https://doi.org/10.1111/1365-2664.13686

    Article  Google Scholar 

  • Araújo Filho, R. N., dos Santos Freire, M. B. G., Wilcox, B. P., West, J. B., Freire, F. J., & Marques, F. A. (2018). Recovery of carbon stocks in deforested caatinga dry forest soils requires at least 60 years. Forest Ecology and Management, 407, 210–220. https://doi.org/10.1016/J.FORECO.2017.10.002

  • Arriga, N., Rannik, Ü., Aubinet, M., Carrara, A., Vesala, T., & Papale, D. (2017). Experimental validation of footprint models for eddy covariance CO2 flux measurements above grassland by means of natural and artificial tracers. Agricultural and Forest Meteorology, 242, 75–84. https://doi.org/10.1016/J.AGRFORMET.2017.04.006

    Article  Google Scholar 

  • Arruda, P. H. Z., Vourlitis, G. L., Santanna, F. B., Pinto, O. B., Jr., de Almeida Lobo, F., & Nogueira, J. D. S. (2016). Large net CO2 loss from a grass-dominated tropical savanna in south-central Brazil in response to seasonal and interannual drought. Journal of Geophysical Research: Biogeosciences, 121(8), 2110–2124. https://doi.org/10.1002/2016JG003404

    Article  CAS  Google Scholar 

  • Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/J.1365-2486.2003.00629.X

    Article  Google Scholar 

  • Baldocchi, D. D., Hicks, B. B., & Meyers, T. P. (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69(5), 1331–1340. https://doi.org/10.2307/1941631

    Article  Google Scholar 

  • Barreto-Garcia, P. A. B., Batista, S. G. M., da Gama-Rodrigues, E. F., de Paula, A., & Batista, W. C. A. (2021). Short-term effects of forest management on soil microbial biomass and activity in caatinga dry forest Brazil. Forest Ecology and Management, 481, 118790. https://doi.org/10.1016/J.FORECO.2020.118790

    Article  Google Scholar 

  • Barrett, D. J., Hatton, T. J., Ash, J. E., & Ball, M. C. (1995). Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant, Cell & Environment, 18(4), 463–469. https://doi.org/10.1111/J.1365-3040.1995.TB00381.X

    Article  Google Scholar 

  • Bautista-Cruz, A., Leyva-Pablo, T., de León-González, F., Zornoza, R., Martínez-Gallegos, V., Fuentes-Ponce, M., & Rodríguez-Sánchez, L. (2018). Cultivation of Opuntia ficus-indica under different soil management practices: A possible sustainable agricultural system to promote soil carbon sequestration and increase soil microbial biomass and activity. Land Degradation & Development, 29(1), 38–46. https://doi.org/10.1002/LDR.2834

    Article  Google Scholar 

  • Bilderback, A. H., Torres, A. J., Vega, M., & Ball, B. A. (2021). The structural and nutrient chemistry during early-stage decomposition and desiccation of cacti in the Sonoran Desert. Journal of Arid Environments, 195, 104636. https://doi.org/10.1016/J.JARIDENV.2021.104636

    Article  Google Scholar 

  • Billesbach, D. P. (2011). Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a proposed new method. Agricultural and Forest Meteorology, 151(3), 394–405. https://doi.org/10.1016/J.AGRFORMET.2010.12.001

    Article  Google Scholar 

  • Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., & Reichstein, M. (2018). Upscaled diurnal cycles of land-Atmosphere fluxes: A new global half-hourly data product. Earth System Science Data, 10(3), 1327–1365. https://doi.org/10.5194/ESSD-10-1327-2018

    Article  Google Scholar 

  • Bonatelli, M. L., Lacerda-Júnior, G. V., dos Reis Junior, F. B., Fernandes-Júnior, P. I., Melo, I. S., & Quecine, M. C. (2021). Beneficial plant-associated microorganisms from semiarid regions and seasonally dry environments: A review. Frontiers in Microbiology, 11, 3331. https://doi.org/10.3389/FMICB.2020.553223/BIBTEX

    Article  Google Scholar 

  • Borges, C. K., dos Santos, C. A. C., Carneiro, R. G., da Silva, L. L., de Oliveira, G., Mariano, D., Silva, M. T., da Silva, B. B., Bezerra, B. G., Perez-Marin, A. M., & de S. Medeiros, S. (2020). Seasonal variation of surface radiation and energy balances over two contrasting areas of the seasonally dry tropical forest (Caatinga) in the Brazilian semi-arid. Environmental Monitoring and Assessment, 192(8), 1–18. https://doi.org/10.1007/s10661-020-08484-y

    Article  Google Scholar 

  • Bright, R. M., Davin, E., O’Halloran, T., Pongratz, J., Zhao, K., & Cescatti, A. (2017). Local temperature response to land cover and management change driven by non-radiative processes. Nature Climate Change, 7(4). https://doi.org/10.1038/nclimate3250

  • Burba, G., & Anderson, D. (2010). A brief practical guide to eddy covariance flux measurements: Principles and Workflow examples for scientific and industrial applications (LI-COR Biosciences (ed.); 1st ed., Vol. 1). www.licor.com

  • Camelo, D., Dubeux, J. C. B., Jr., dos Santos, M. V. F., Lira, M. A., Fracetto, G. G. M., Fracetto, F. J. C., da Cunha, M. V., & de Freitas, E. V. (2021). Soil microbial activity and biomass in semiarid agroforestry systems integrating forage cactus and tree legumes. Agronomy, 11(8), 1558. https://doi.org/10.3390/AGRONOMY11081558

    Article  CAS  Google Scholar 

  • Campioli, M., Malhi, Y., Vicca, S., Luyssaert, S., Papale, D., Peñuelas, J., Reichstein, M., Migliavacca, M., Arain, M. A., & Janssens, I. A. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(1), 13717. https://doi.org/10.1038/ncomms13717

    Article  CAS  Google Scholar 

  • Campos, S., Mendes, K. R., da Silva, L. L., Mutti, P. R., Medeiros, S. S., Amorim, L. B., dos Santos, C. A. C., Perez-Marin, A. M., Ramos, T. M., Marques, T. V., Lucio, P. S., Costa, G. B., Santos e Silva, C. M., & Bezerra, B. G. (2019). Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agricultural and Forest Meteorology, 271, 398–412. https://doi.org/10.1016/j.agrformet.2019.03.018

    Article  Google Scholar 

  • Castellví, F., Suvočarev, K., Reba, M. L., & Runkle, B. R. K. (2020). A new free-convection form to estimate sensible heat and latent heat fluxes for unstable cases. Journal of Hydrology, 586, 124917. https://doi.org/10.1016/J.JHYDROL.2020.124917

    Article  Google Scholar 

  • Cavaleri, M. A., Reed, S. C., Smith, W. K., & Wood, T. E. (2015). Urgent need for warming experiments in tropical forests. Global Change Biology, 21(6), 2111–2121. https://doi.org/10.1111/gcb.12860

    Article  Google Scholar 

  • Chandel, A. K., Khot, L. R., Molaei, B., Peters, R. T., Stöckle, C. O., & Jacoby, P. W. (2021). High-resolution spatiotemporal water use mapping of surface and direct-root-zone drip-irrigated grapevines using UAS-based thermal and multispectral remote sensing. Remote Sensing, 13(5), 954. https://doi.org/10.3390/RS13050954

    Article  Google Scholar 

  • Chen, J. M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment, 237, 111594. https://doi.org/10.1016/J.RSE.2019.111594

    Article  Google Scholar 

  • Consoli, S., Inglese, G., & Inglese, P. (2013a). Determination of evapotranspiration and annual biomass productivity of a cactus pear [Opuntia ficus-indica L. (Mill.)] orchard in a semiarid environment. Journal of Irrigation and Drainage Engineering, 139(8), 680–690.https://doi.org/10.1061/(ASCE)IR.1943-4774.0000589

  • Consoli, S., Inglese, P., & Inglese, G. (2013b). Determination of evapotranspiration and crop coefficient of cactus pear (Opuntia ficus-indica Mill.) with an energy balance technique. Acta Horticulturae, 995, 117–124. https://doi.org/10.17660/ACTAHORTIC.2013b.995.14

  • Consoli, S., & Papa, R. (2013). Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions. Irrigation Science, 31(5), 1159–1171. https://doi.org/10.1007/S00271-012-0395-4

    Article  Google Scholar 

  • Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the mediterranean over the last 900 years. Journal of Geophysical Research, 121(5), 2060–2074. https://doi.org/10.1002/2015JD023929

    Article  Google Scholar 

  • Costa, G. B., Santos Silva, C. M., Mendes, K. R., dos Santos, J. G. M. Neves, T. T. A. T., Silva, A. S., Rodrigues, T. R., Silva, J. B., Dalmagro, H. J., Mutti, P. R., Nunes, H. G. G. C., Peres, L. V, Santana, R. A. S., Viana, L. B., Almeida, G. V, Bezerra, B. G., Marques, T. V, Ferreira, R. R., Oliveira, C. P., … & Andrade, M. U. G. (2022). WUE and CO2 estimations by eddy covariance and remote sensing in different tropical biomes. Remote Sensing, 14(14), 3241. https://doi.org/10.3390/RS14143241

  • de Jesus, J. B., de Oliveira, D. G., Araújo, W. S., da Cruz, L. S., & Kuplich, T. M. (2022). Influence of anthropization on the floristic composition and phytosociology of the Caatinga susceptible to desertification in the state of Sergipe, Brazil. Tropical Ecology, 1, 1–11. https://doi.org/10.1007/S42965-021-00201-1/FIGURES/4

    Article  Google Scholar 

  • De León-González, F., Fuentes-Ponce, M. H., Bautista-Cruz, A., Leyva-Pablo, T., Castillo-Juárez, H., & Rodríguez-Sánchez, L. M. (2018). Cactus crop as an option to reduce soil C-CO2 emissions in soils with declining fertility. Agronomy for Sustainable Development, 38(8), 1–10. https://doi.org/10.1007/S13593-017-0481-3

    Article  Google Scholar 

  • de Oliveira, A. C. P., Nunes, A., Rodrigues, R. G., & Branquinho, C. (2020). The response of plant functional traits to aridity in a tropical dry forest. Science of the Total Environment, 747, 141177. https://doi.org/10.1016/J.SCITOTENV.2020.141177

    Article  Google Scholar 

  • de Oliveira, M. L., dos Santos, C. A. C., de Oliveira, G., Perez-Marin, A. M., & Santos, C. A. G. (2021). Effects of human-induced land degradation on water and carbon fluxes in two different Brazilian dryland soil covers. Science of the Total Environment, 792, 148458. https://doi.org/10.1016/J.SCITOTENV.2021.148458

    Article  Google Scholar 

  • de Oliveira, M. L., dos Santos, C. A. C., de Oliveira, G., Silva, M. T., da Silva, B. B., de B. L. Cunha, J. E., Ruhoff, A., & Santos, C. A. G. (2022). Remote sensing-based assessment of land degradation and drought impacts over terrestrial ecosystems in Northeastern Brazil. Science of the Total Environment, 835, 155490. https://doi.org/10.1016/J.SCITOTENV.2022.155490

  • Dhungel, R., Aiken, R., Evett, S. R., Colaizzi, P. D., Marek, G., Moorhead, J. E., Baumhardt, R. L., Brauer, D., Kutikoff, S., & Lin, X. (2021). Energy imbalance and evapotranspiration hysteresis under an advective environment: Evidence from lysimeter, eddy covariance, and energy balance modeling. Geophysical Research Letters, 48(1), e2020GL091203. https://doi.org/10.1029/2020GL091203

  • Ding, Y., Xu, J., Wang, X., Cai, H., Zhou, Z., Sun, Y., & Shi, H. (2021). Propagation of meteorological to hydrological drought for different climate regions in China. Journal of Environmental Management, 283, 111980. https://doi.org/10.1016/j.jenvman.2021.111980

    Article  Google Scholar 

  • Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … & Phillips, O. L. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40(5), 618–629 https://doi.org/10.1111/ecog.01904

  • Fang, X., Zhao, L., Zhou, G., Huang, W., & Liu, J. (2015). Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant and Soil, 392(1), 139–153. https://doi.org/10.1007/S11104-015-2450-4

    Article  CAS  Google Scholar 

  • Faridatul, M. I., Wu, B., Zhu, X., & Wang, S. (2020). Improving remote sensing based evapotranspiration modelling in a heterogeneous urban environment. Journal of Hydrology, 581, 124405. https://doi.org/10.1016/J.JHYDROL.2019.124405

    Article  Google Scholar 

  • Feldpausch, T. R., Phillips, O. L., Brienen, R. J. W., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Alarcón, A., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., Arroyo, L., Aymard Corredor, G. A., Baker, T. R., Baraloto, C., Barroso, J., Bonal, D., … & Vos, V. A. (2016). Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 30(7), 964–982. https://doi.org/10.1002/2015GB005133

  • Ferreira, R. R., Mutti, P., Mendes, K. R., Campos, S., Marques, T. V., Oliveira, C. P., Gonçalves, W., Mota, J., Difante, G., Urbano, S. A., Fernandes, L., Bezerra, B. G., & Silva, C. M. S. E. (2020). An assessment of the MOD17A2 gross primary production product in the Caatinga biome Brazil. International Journal of Remote Sensing, 42(4), 1275–1291. https://doi.org/10.1080/01431161.2020.1826063

    Article  Google Scholar 

  • Flanagan, L. B., & Flanagan, J. E. M. (2018). Seasonal controls on ecosystem-scale CO2 and energy exchange in a Sonoran Desert characterized by the saguaro cactus (Carnegiea gigantea). Oecologia, 187(4), 977–994. https://doi.org/10.1007/S00442-018-4187-2

    Article  Google Scholar 

  • Flanagan, L. B., Nikkel, D. J., Scherloski, L. M., Tkach, R. E., Smits, K. M., Selinger, L. B., & Rood, S. B. (2021). Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem. New Phytologist, 229(4), 1970–1982. https://doi.org/10.1111/NPH.16977

    Article  CAS  Google Scholar 

  • Flanagan, L. B., Orchard, T. E., Logie, G. S. J., Coburn, C. A., & Rood, S. B. (2017). Water use in a riparian cottonwood ecosystem: Eddy covariance measurements and scaling along a river corridor. Agricultural and Forest Meteorology, 232, 332–348. https://doi.org/10.1016/J.AGRFORMET.2016.08.024

    Article  Google Scholar 

  • Fuchs, S., Leuschner, C., Link, R., Coners, H., & Schuldt, B. (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology, 244–245, 151–161. https://doi.org/10.1016/J.AGRFORMET.2017.04.003

    Article  Google Scholar 

  • Goldsmith, G. R. (2013). Changing directions: The atmosphere–plant–soil continuum. New Phytologist, 199(1), 4–6. https://doi.org/10.1111/NPH.12332

    Article  Google Scholar 

  • Gomez-Casanovas, N., Blanc-Betes, E., Gonzalez-Meler, M. A., & Azcon-Bieto, J. (2007). Changes in respiratory mitochondrial machinery and cytochrome and alternative pathway activities in response to energy demand underlie the acclimation of respiration to elevated CO2 in the invasive Opuntia ficus-indica. Plant Physiology, 145(1), 49–61. https://doi.org/10.1104/PP.107.103911

    Article  CAS  Google Scholar 

  • Granier, A. (1985). Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annals of Forest Science, 42(2), 193–200. https://doi.org/10.1051/forest:19850204

    Article  Google Scholar 

  • Grimmond, C. S. B., & Oke, T. R. (1999). Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology and Climatology, 38(9), 1262–1292. https://doi.org/10.1175/1520-0450(1999)038%3c1262:APOUAD%3e2.0.CO;2

    Article  Google Scholar 

  • Guevara-Escobar, A., González-Sosa, E., Cervantes-Jimenez, M., Suzán-Azpiri, H., Queijeiro-Bolanos, M. E., Carrillo-Ángeles, I., & Cambron-Sandoval, V. H. (2021). Machine learning estimates of eddy covariance carbon flux in a scrub in the Mexican highland. Biogeosciences, 18(2), 367–392. https://doi.org/10.5194/BG-18-367-2021

    Article  CAS  Google Scholar 

  • Guillen-Cruz, G., Rodríguez-Sánchez, A. L., Fernández-Luqueño, F., & Flores-Rentería, D. (2021). Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban Forestry & Urban Greening, 62, 127135. https://doi.org/10.1016/J.UFUG.2021.127135

    Article  Google Scholar 

  • Guo, Y., Huang, S., Huang, Q., Leng, G., Fang, W., Wang, L., & Wang, H. (2020). Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Science of the Total Environment, 712, 136502. https://doi.org/10.1016/j.scitotenv.2020.136502

    Article  CAS  Google Scholar 

  • Hartzell, S., Bartlett, M. S., & Porporato, A. (2018). Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model. Ecological Modelling, 384, 173–187. https://doi.org/10.1016/J.ECOLMODEL.2018.06.012

    Article  CAS  Google Scholar 

  • Heilman, J. L., McInnes, K. J., Savage, M. J., Gesch, R. W., & Lascano, R. J. (1994). Soil and canopy energy balances in a west Texas vineyard. Agricultural and Forest Meteorology, 71(1–2), 99–114. https://doi.org/10.1016/0168-1923(94)90102-3

    Article  Google Scholar 

  • Heusinkveld, B. G., Jacobs, A. F. G., Holtslag, A. A. M., & Berkowicz, S. M. (2004). Surface energy balance closure in an arid region: Role of soil heat flux. Agricultural and Forest Meteorology, 122(1–2), 21–37. https://doi.org/10.1016/J.AGRFORMET.2003.09.005

    Article  Google Scholar 

  • Hogewoning, S. W., van den Boogaart, S. A. J., van Tongerlo, E., & Trouwborst, G. (2021). CAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral and CO2. Plant, Cell & Environment, 44(3), 762–774. https://doi.org/10.1111/PCE.13960

    Article  CAS  Google Scholar 

  • Holtum, J. A. M., Hancock, L. P., Edwards, E. J., Crisp, M. D., Crayn, D. M., Sage, R., & Winter, K. (2016). Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Current Opinion in Plant Biology, 31, 109–117. https://doi.org/10.1016/J.PBI.2016.03.018

    Article  CAS  Google Scholar 

  • Hu, G., Liu, H., Shangguan, H., Wu, X., Xu, X., & Williams, M. (2018). The role of heartwood water storage for sem-arid trees under drought. Agricultural and Forest Meteorology, 256–257, 534–541. https://doi.org/10.1016/j.agrformet.2018.04.007

    Article  Google Scholar 

  • Huang, L., Zhai, J., Liu, J., & Sun, C. (2018). The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China. Agricultural and Forest Meteorology, 260–261, 193–203. https://doi.org/10.1016/J.AGRFORMET.2018.05.020

    Article  Google Scholar 

  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou, Eds.). Cambridge. In Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf

  • Jacob, M. C. M., de Medeiros, M. F. A., & Albuquerque, U. P. (2020). Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE, 15(5), e0230936. https://doi.org/10.1371/JOURNAL.PONE.0230936

    Article  CAS  Google Scholar 

  • Jardim, A. M. R. F., Araújo Júnior, G. N., Silva, M. V., Santos, A., Silva, J. L. B., Pandorfi, H., Oliveira-Júnior, J. F., Teixeira, A. H. C., Teodoro, P. E., de Lima, J. L. M. P., Silva Junior, C. A., Souza, L. S. B., Silva, E. A., & Silva, T. G. F. (2022). Using remote sensing to quantify the joint effects of climate and land use/land cover changes on the Caatinga biome of northeast Brazilian. Remote Sensing, 14(8), 1911. https://doi.org/10.3390/RS14081911

    Article  Google Scholar 

  • Kalthoff, N., Fiebig-Wittmaack, M., Meißner, C., Kohler, M., Uriarte, M., Bischoff-Gauß, I., & Gonzales, E. (2006). The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. Journal of Arid Environments, 65(3), 420–443. https://doi.org/10.1016/J.JARIDENV.2005.08.013

    Article  Google Scholar 

  • Kotowska, M. M., Link, R. M., Röll, A., Hertel, D., Hölscher, D., Waite, P.-A., Moser, G., Tjoa, A., Leuschner, C., & Schuldt, B. (2021). Effects of wood hydraulic properties on water use and productivity of tropical rainforest trees. Frontiers in Forests and Global Change, 3, 598759. https://doi.org/10.3389/FFGC.2020.598759

    Article  Google Scholar 

  • Kulmala, L., Pumpanen, J., Kolari, P., Dengel, S., Berninger, F., Köster, K., Matkala, L., Vanhatalo, A., Vesala, T., & Bäck, J. (2019). Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agricultural and Forest Meteorology, 271, 1–11. https://doi.org/10.1016/J.AGRFORMET.2019.02.029

    Article  Google Scholar 

  • Lai, L., Huang, X., Yang, H., Chuai, X., Zhang, M., Zhong, T., Chen, Z., Chen, Y., Wang, X., & Thompson, J. R. (2016). Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2(11). https://doi.org/10.1126/SCIADV.1601063/SUPPL_FILE/1601063_SM.PDF

  • Levy, P., Drewer, J., Jammet, M., Leeson, S., Friborg, T., Skiba, U., & van Oijen, M. (2020). Inference of spatial heterogeneity in surface fluxes from eddy covariance data: A case study from a subarctic mire ecosystem. Agricultural and Forest Meteorology, 280, 107783. https://doi.org/10.1016/J.AGRFORMET.2019.107783

    Article  Google Scholar 

  • Li, Y., Liu, Y., Bohrer, G., Cai, Y., Wilson, A., Hu, T., Wang, Z., & Zhao, K. (2022). Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations. Science of the Total Environment, 802, 149651. https://doi.org/10.1016/J.SCITOTENV.2021.149651

    Article  CAS  Google Scholar 

  • Lima, C. E. S., de Costa, V. S., & O., Galvíncio, J. D., Silva, R. M. da, & Santos, C. A. G. (2021). Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region. Agricultural Water Management, 250, 106863. https://doi.org/10.1016/J.AGWAT.2021.106863

    Article  Google Scholar 

  • Lindoso, D. P., Eiró, F., Bursztyn, M., Rodrigues-Filho, S., & Nasuti, S. (2018). Harvesting water for living with drought: Insights from the Brazilian human coexistence with semi-aridity approach towards achieving the sustainable development goals. Sustainability, 10(3), 622. https://doi.org/10.3390/SU10030622

    Article  Google Scholar 

  • Link, R. M., Fuchs, S., Arias Aguilar, D., Leuschner, C., Castillo Ugalde, M., Valverde Otarola, J. C., & Schuldt, B. (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913. https://doi.org/10.1016/J.AGRFORMET.2020.107913

    Article  Google Scholar 

  • Liu, H., Park Williams, A., Allen, C. D., Guo, D., Wu, X., Anenkhonov, O. A., Liang, E., Sandanov, D. V., Yin, Y., Qi, Z., & Badmaeva, N. K. (2013). Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19(8), 2500–2510. https://doi.org/10.1111/gcb.12217

    Article  Google Scholar 

  • Liu, L., Gong, F., Chen, X., Su, Y., Fan, L., Wu, S., Yang, X., Zhang, J., Yuan, W., Ciais, P., & Zhou, C. (2021a). Bidirectional drought-related canopy dynamics across pantropical forests: A satellite-based statistical analysis. Remote Sensing in Ecology and Conservation, 1–20. https://doi.org/10.1002/RSE2.229

  • Liu, J., You, Y., Li, J., Sitch, S., Gu, X., Nabel, J. E. M. S., Lombardozzi, D., Luo, M., Feng, X., Arneth, A., Jain, A. K., Friedlingstein, P., Tian, H., Poulter, B., & Kong, D. (2021b). Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 311, 108663. https://doi.org/10.1016/J.AGRFORMET.2021.108663

    Article  Google Scholar 

  • Loescher, H. W., Law, B. E., Mahrt, L., Hollinger, D. Y., Campbell, J., & Wofsy, S. C. (2006). Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. Journal of Geophysical Research: Atmospheres, 111(D21), 21–90. https://doi.org/10.1029/2005JD006932

    Article  CAS  Google Scholar 

  • López-Pacheco, I. Y., Rodas-Zuluaga, L. I., Fuentes-Tristan, S., Castillo-Zacarías, C., Sosa-Hernández, J. E., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces. Journal of CO2 Utilization, 53, 101704. https://doi.org/10.1016/J.JCOU.2021.101704

  • MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L., Köhler, P., Gómez-Dans, J., & Disney, M. (2018). Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-20024-w

    Article  CAS  Google Scholar 

  • Mady, B., Lehmann, P., Gorelick, S. M., & Or, D. (2020). Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications, 2(6), 061002. https://doi.org/10.1088/2515-7620/AB92AF

    Article  Google Scholar 

  • Maltese, A., Awada, H., Capodici, F., Ciraolo, G., Loggia, G. L., & Rallo, G. (2018). On the use of the eddy covariance latent heat flux and sap flow transpiration for the validation of a surface energy balance model. Remote Sensing, 10(2), 195. https://doi.org/10.3390/RS10020195

    Article  Google Scholar 

  • Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Climatic Change, 129(1–2), 103–115. https://doi.org/10.1007/S10584-014-1310-1/FIGURES/5

    Article  Google Scholar 

  • Marengo, J. A., Cunha, A. P. M. A., Nobre, C. A., Ribeiro Neto, G. G., Magalhaes, A. R., Torres, R. R., Sampaio, G., Alexandre, F., Alves, L. M., Cuartas, L. A., Deusdará, K. R. L., & Álvala, R. C. S. (2020). Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Natural Hazards, 103(2), 2589–2611. https://doi.org/10.1007/S11069-020-04097-3/TABLES/3

    Article  Google Scholar 

  • Marques, T. V., Mendes, K., Mutti, P., Medeiros, S., Silva, L., Perez-Marin, A. M., Campos, S., Lúcio, P. S., Lima, K., dos Reis, J., Ramos, T. M., da Silva, D. F., Oliveira, C. P., Costa, G. B., Antonino, A. C. D., Menezes, R. S. C., & Santos e Silva, C. M., & Bezerra, B. (2020). Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agricultural and Forest Meteorology, 287, 107957. https://doi.org/10.1016/j.agrformet.2020.107957

    Article  Google Scholar 

  • Matos, P. S., Barreto-Garcia, P. A. B., Gama-Rodrigues, E. F., de Paula, A., & de Oliveira, A. M. (2021). Short-term effects of forest management on litter decomposition in Caatinga dry forest. Energy, Ecology and Environment, 7(2), 130–141. https://doi.org/10.1007/S40974-021-00231-4

    Article  Google Scholar 

  • Matthews, B., & Schume, H. (2022). Tall tower eddy covariance measurements of CO2 fluxes in Vienna Austria. Atmospheric Environment, 274, 118941. https://doi.org/10.1016/J.ATMOSENV.2022.118941

    Article  CAS  Google Scholar 

  • Mauder, M., Foken, T., & Cuxart, J. (2020). Surface-energy-balance closure over land: A review. Boundary-Layer Meteorology, 177(2), 395–426. https://doi.org/10.1007/S10546-020-00529-6

    Article  Google Scholar 

  • Mendes, K. R., Campos, S., da Silva, L. L., Mutti, P. R., Ferreira, R. R., Medeiros, S. S., Perez-Marin, A. M., Marques, T. V., Ramos, T. M., de Lima Vieira, M. M., Oliveira, C. P., Gonçalves, W. A., Costa, G. B., Antonino, A. C. D., Menezes, R. S. C., Bezerra, B. G., & Santos e Silva, C. M. (2020). Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-66415-w

    Article  CAS  Google Scholar 

  • Mendes, K. R., Campos, S., Mutti, P. R., Ferreira, R. R., Ramos, T. M., Marques, T. V., Dos Reis, J. S., de Lima Vieira, M. M., Silva, A. C. N., Marques, A. M. S., da Silva, D. T. C., da Silva, D. F., Oliveira, C. P., Gonçalves, W. A., Costa, G. B., Pompelli, M. F., Marenco, R. A., Antonino, A. C. D., Menezes, R. S. C., … & Santos E Silva, C. M. (2021). Assessment of SITE for CO2 and energy fluxes simulations in a Seasonally Dry Tropical Forest (Caatinga Ecosystem). Forests, 12(1), 86 https://doi.org/10.3390/F12010086

  • Menezes, R. S. C., Sales, A. T., Primo, D. C., de Albuquerque, E. R. G. M., de Jesus, K. N., Pareyn, F. G. C., da Silva Santana, M., dos Santos, U. J., Martins, J. C. R., Althoff, T. D., do Nascimento, D. M., Gouveia, R. F., Fernandes, M. M., Loureiro, D. C., de Araújo Filho, J. C., Giongo, V., Duda, G. P., Alves, B. J. R., de M. Ivo, W. M. P., … & de Sa Barretto Sampaio, E. V. (2021). Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma, 390, 114943. https://doi.org/10.1016/J.GEODERMA.2021.114943

  • Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., & Stauch, V. J. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147(3–4), 209–232. https://doi.org/10.1016/J.AGRFORMET.2007.08.011

    Article  Google Scholar 

  • Mokhtari, A., Ahmadi, A., Daccache, A., & Drechsler, K. (2021). Actual evapotranspiration from UAV images: A multi-sensor data fusion approach. Remote Sensing, 13(12), 2315. https://doi.org/10.3390/RS13122315

    Article  Google Scholar 

  • Moore, G. W., Bond, B. J., Jones, J. A., & Meinzer, F. C. (2010). Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years. Trees, 24(1), 165–174. https://doi.org/10.1007/S00468-009-0390-4

    Article  Google Scholar 

  • Morgan, J. A., Lecain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., & West, M. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476(7359), 202–205. https://doi.org/10.1038/nature10274

    Article  CAS  Google Scholar 

  • Neupane, D., Mayer, J. A., Niechayev, N. A., Bishop, C. D., & Cushman, J. C. (2021). Five-year field trial of the biomass productivity and water input response of cactus pear (Opuntia spp.) as a bioenergy feedstock for arid lands. GCB Bioenergy: Bioproducts for a Sustainable Bioeconomy, 13(4), 719–741. https://doi.org/10.1111/GCBB.12805

  • Nichols, K. L., Del Grosso, S. J., Derner, J. D., Follett, R. F., Archibeque, S. L., Stewart, C. E., & Paustian, K. H. (2016). Nitrous oxide and methane fluxes from cattle excrement on C3 pasture and C4-dominated shortgrass steppe. Agriculture, Ecosystems & Environment, 225, 104–115. https://doi.org/10.1016/J.AGEE.2016.03.026

    Article  CAS  Google Scholar 

  • Nisa, Z., Khan, M. S., Govind, A., Marchetti, M., Lasserre, B., Magliulo, E., & Manco, A. (2021). Evaluation of SEBS, METRIC-EEFlux, and QWaterModel actual evapotranspiration for a Mediterranean cropping system in Southern Italy. Agronomy, 11(2), 345. https://doi.org/10.3390/AGRONOMY11020345

    Article  Google Scholar 

  • Niu, Y., Li, Y., Wang, M., Wang, X., Chen, Y., & Duan, Y. (2021). Variations in seasonal and inter-annual carbon fluxes in a semi-arid sandy maize cropland ecosystem in China’s Horqin Sandy Land. Environmental Science and Pollution Research, 1–18. https://doi.org/10.1007/S11356-021-15751-Z

  • Nobel, P. S., & Hartsock, T. L. (1984). Physiological responses of Opuntia ficus-indica to growth temperature. Physiologia Plantarum, 60(1), 98–105. https://doi.org/10.1111/J.1399-3054.1984.TB04257.X

    Article  Google Scholar 

  • Nobel, P. S., & Israel, A. A. (1994). Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. Journal of Experimental Botany, 45(3), 295–303. https://doi.org/10.1093/JXB/45.3.295

    Article  Google Scholar 

  • Nobre, P., Marengo, J. A., Cavalcanti, I. F. A., Obregon, G., Barros, V., Camilloni, I., Campos, N., & Ferreira, A. G. (2006). Seasonal-to-decadal predictability and prediction of South American climate. Journal of Climate, 19(23), 5988–6004. https://doi.org/10.1175/JCLI3946.1

    Article  Google Scholar 

  • Noorisameleh, Z., Khaledi, S., Shakiba, A., Firouzabadi, P. Z., Gough, W. A., & Qader Mirza, M. M. (2020). Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. Water Science and Engineering, 13(4), 265–274. https://doi.org/10.1016/j.wse.2020.05.001

    Article  Google Scholar 

  • Oliveira, M. B. L., Santos, A. J. B., Manzi, A. O., Alvalá, R. C. S., Correia, M. F., & Moura, M. S. B. (2006). Trocas de energia e fluxo de carbono entre a vegetação de caatinga e atmosfera no Nordeste brasileiro. Revista Brasileira De Meteorologia, 21, 378–386.

    Google Scholar 

  • Owen, N. A., Choncubhair, Ó. N., Males, J., del Laborde, J. I., del Real Rubio-Cortés, R., Griffiths, H., & Lanigan, G. (2016). Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave. Plant, Cell & Environment, 39(2), 295–309. https://doi.org/10.1111/PCE.12610

    Article  CAS  Google Scholar 

  • Palmroth, S., Bach, L. H., Lindh, M., Kolari, P., Nordin, A., & Palmqvist, K. (2019). Nitrogen supply and other controls of carbon uptake of understory vegetation in a boreal Picea abies forest. Agricultural and Forest Meteorology, 276–277, 107620. https://doi.org/10.1016/J.AGRFORMET.2019.107620

    Article  Google Scholar 

  • Pecchioni, G., Bosco, S., Volpi, I., Mantino, A., Dragoni, F., Giannini, V., Tozzini, C., Mele, M., & Ragaglini, G. (2020). Carbon budget of an agroforestry system after being converted from a poplar short rotation coppice. Agronomy, 10(9), 1251. https://doi.org/10.3390/AGRONOMY10091251

    Article  CAS  Google Scholar 

  • Pereira, M. P. S., Mendes, K. R., Justino, F., Couto, F., da Silva, A. S., da Silva, D. F., & Malhado, A. C. M. (2020). Brazilian dry forest (Caatinga) response to multiple ENSO: The role of Atlantic and Pacific Ocean. Science of the Total Environment, 705, 135717. https://doi.org/10.1016/J.SCITOTENV.2019.135717

    Article  CAS  Google Scholar 

  • Poyatos, R., Granda, V., Flo, V., Adams, M. A., Adorján, B., Aguadé, D., Aidar, M. P. M., Allen, S., Alvarado-Barrientos, M. S., Anderson-Teixeira, K. J., Aparecido, L. M., Altaf Arain, M., Aranda, I., Asbjornsen, H., Baxter, R., Beamesderfer, E., Berry, Z. C., Berveiller, D., Blakely, B., … & Martínez-Vilalta, J. (2021). Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth System Science Data, 13(6), 2607–2649 https://doi.org/10.5194/ESSD-13-2607-2021

  • Queiroz, M. G., da Silva, T. G. F., Zolnier, S., de Souza, C. A. A., de Souza, L. S. B., Steidle Neto, A. J., de Araújo, G. G. L., & Ferreira, W. P. M. (2019). Seasonal patterns of deposition litterfall in a seasonal dry tropical forest. Agricultural and Forest Meteorology, 279, 107712. https://doi.org/10.1016/J.AGRFORMET.2019.107712

    Article  Google Scholar 

  • Quiroz, M., Varnero, M. T., Cuevas, J. G., & Sierra, H. (2021). Cactus pear (Opuntia ficus-indica) in areas with limited rainfall for the production of biogas and biofertilizer. Journal of Cleaner Production, 289, 125839. https://doi.org/10.1016/J.JCLEPRO.2021.125839

    Article  CAS  Google Scholar 

  • Rannik, Ü., Peltola, O., & Mammarella, I. (2016). Random uncertainties of flux measurements by the eddy covariance technique. Atmospheric Measurement Techniques, 9(10), 5163–5181. https://doi.org/10.5194/AMT-9-5163-2016

    Article  Google Scholar 

  • Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has likely already affected global food production. PLoS ONE, 14(5), e0217148. https://doi.org/10.1371/journal.pone.0217148

    Article  CAS  Google Scholar 

  • Rebmann, C., Göckede, M., Foken, T., Aubinet, M., Aurela, M., Berbigier, P., Bernhofer, C., Buchmann, N., Carrara, A., Cescatti, A., Ceulemans, R., Clement, R., Elbers, J. A., Granier, A., Grünwald, T., Guyon, D., Havránková, K., Heinesch, B., Knohl, A., … & Yakir, D. (2005). Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 80(2), 121–141 https://doi.org/10.1007/S00704-004-0095-Y

  • Ribeiro, K., de Sousa-Neto, E. R., de Carvalho, J. A., de Sousa Lima, J. R., Menezes, R. S. C., Duarte-Neto, P. J., da Silva Guerra, G., & Ometto, J. P. H. B. (2016). Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Science of the Total Environment, 571, 1048–1057. https://doi.org/10.1016/J.SCITOTENV.2016.07.095

    Article  CAS  Google Scholar 

  • Riutta, T., Kho, L. K., Teh, Y. A., Ewers, R., Majalap, N., & Malhi, Y. (2021). Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Global Change Biology, 27(10), 2225–2240. https://doi.org/10.1111/GCB.15522

    Article  CAS  Google Scholar 

  • Rocha, S. J. S. S., Torres, C. M. M. E., Villanova, P. H., Schettini, B. L. S., Jacovine, L. A. G., Leite, H. G., Gelcer, E. M., Reis, L. P., Neves, K. M., Comini, I. B., & da Silva, L. F. (2020). Drought effects on carbon dynamics of trees in a secondary Atlantic Forest. Forest Ecology and Management, 465, 118097. https://doi.org/10.1016/j.foreco.2020.118097

    Article  Google Scholar 

  • Rossel, R. A. V., Webster, R., Bui, E. N., & Baldock, J. A. (2014). Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Global Change Biology, 20(9), 2953–2970. https://doi.org/10.1111/GCB.12569

    Article  Google Scholar 

  • Saito, H., Šimůnek, J., & Mohanty, B. P. (2006). Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone Journal, 5(2), 784–800. https://doi.org/10.2136/VZJ2006.0007

    Article  CAS  Google Scholar 

  • Saleska, S. R., Wu, J., Guan, K., Araujo, A. C., Huete, A., Nobre, A. D., & Restrepo-Coupe, N. (2016). Dry-season greening of Amazon forests. Nature, 531(7594), E4–E5. https://doi.org/10.1038/nature16457

    Article  CAS  Google Scholar 

  • Santos, C. A. C., Mariano, D. A., do Nascimento, F. D. C. A., Fabiane, F. R., de Oliveira, G., Silva, M. T., da Silva, L. L., da Silva, B. B., Bezerra, B. G., Safa, B., Medeiros, S. S., & Neale, C. M. U. (2020). Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. International Journal of Applied Earth Observation and Geoinformation, 85, 101982. https://doi.org/10.1016/j.jag.2019.101982

  • Schimel, D., & Schneider, F. D. (2019). Flux towers in the sky: Global ecology from space. New Phytologist, 224(2), 570–584. https://doi.org/10.1111/NPH.15934

    Article  Google Scholar 

  • Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189–190, 115–117. https://doi.org/10.1016/j.agrformet.2014.01.011

    Article  Google Scholar 

  • Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A., & Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. Forest Ecology and Management, 367, 62–70. https://doi.org/10.1016/J.FORECO.2016.02.011

    Article  Google Scholar 

  • Seidl, R., Spies, T. A., Peterson, D. L., Stephens, S. L., & Hicke, J. A. (2016). REVIEW: Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 53(1), 120–129. https://doi.org/10.1111/1365-2664.12511

    Article  Google Scholar 

  • Shang, K., Yao, Y., Li, Y., Yang, J., Jia, K., Zhang, X., Chen, X., Bei, X., & Guo, X. (2020). Fusion of five satellite-derived products using extremely randomized trees to estimate terrestrial latent heat flux over Europe. Remote Sensing, 12(4), 687. https://doi.org/10.3390/RS12040687

    Article  Google Scholar 

  • Silva, A. M. D. O., Freire, F. J., Barbosa, M. D., Ferreira, R. L. C., Freire, M. B. G. D. S., da Silva, M. I. O., Borges, C. H. A., & de Lima, D. R. M. (2021). Residence time and release of carbon and nitrogen from litter in Caatinga. Floresta e Ambiente, 28(4), 1–11. https://doi.org/10.1590/2179-8087-FLORAM-2021-0053

    Article  CAS  Google Scholar 

  • Silva Junior, C. A., Teodoro, P. E., Delgado, R. C., Teodoro, L. P. R., Lima, M., de Andréa Pantaleão, A., Baio, F. H. R., de Azevedo, G. B., de Oliveira Sousa Azevedo, G. T., Capristo-Silva, G. F., Arvor, D., & Facco, C. U. (2020). Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-72571-w

    Article  CAS  Google Scholar 

  • Silva, P. F., de Sousa Lima, J. R., Antonino, A. C. D., Souza, R., de Souza, E. S., Silva, J. R. I., & Alves, E. M. (2017). Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. Journal of Arid Environments, 147, 71–82. https://doi.org/10.1016/J.JARIDENV.2017.09.003

  • Spinoni, J., Barbosa, P., Cherlet, M., Forzieri, G., McCormick, N., Naumann, G., Vogt, J. V., & Dosio, A. (2021). How will the progressive global increase of arid areas affect population and land-use in the 21st century? Global and Planetary Change, 205, 103597. https://doi.org/10.1016/J.GLOPLACHA.2021.103597

    Article  Google Scholar 

  • Tan, Z. H., Zhao, J. F., Wang, G. Z., Chen, M. P., Yang, L. Y., He, C. S., Restrepo-Coupe, N., Peng, S. S., Liu, X. Y., da Rocha, H. R., Kosugi, Y., Hirano, T., Saleska, S. R., Goulden, M. L., Zeng, J., Ding, F. J., Gao, F., & Song, L. (2019). Surface conductance for evapotranspiration of tropical forests: Calculations, variations, and controls. Agricultural and Forest Meteorology, 275, 317–328. https://doi.org/10.1016/j.agrformet.2019.06.006

    Article  Google Scholar 

  • Teixeira, A. H. C., Bastiaanssen, W. G. M., Ahmad, M. D., Moura, M. S. B., & Bos, M. G. (2008). Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. Journal of Hydrology, 362(1–2), 110–127. https://doi.org/10.1016/J.JHYDROL.2008.08.011

    Article  Google Scholar 

  • Tonin, A. M., Gonçalves, J. F., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M., Fontana, L. E., Hamada, N., Hepp, L. U., Lezan-Kowalczuk, V. G., Leite, G. F. M., Lemes-Silva, A. L., Lisboa, L. K., Loureiro, R. C., Martins, R. T., Medeiros, A. O., Morais, P. B., Moretto, Y., Oliveria, P. C. A., Pereira, E. B., … & Boyero, L. (2017). Plant litter dynamics in the forest-stream interface: Precipitation is a major control across tropical biomes. Scientific Reports, 7(1), 1–14 https://doi.org/10.1038/s41598-017-10576-8

  • Valayamkunnath, P., Sridhar, V., Zhao, W., & Allen, R. G. (2019). A comprehensive analysis of interseasonal and interannual energy and water balance dynamics in semiarid shrubland and forest ecosystems. Science of the Total Environment, 651, 381–398. https://doi.org/10.1016/J.SCITOTENV.2018.09.130

    Article  CAS  Google Scholar 

  • Vandegehuchte, M. W., & Steppe, K. (2013). Sap-flux density measurement methods: Working principles and applicability. Functional Plant Biology, 40(3), 213–223. https://doi.org/10.1071/FP12233

    Article  Google Scholar 

  • Velasco, E., & Roth, M. (2010). Cities as Net Sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9), 1238–1259. https://doi.org/10.1111/J.1749-8198.2010.00384.X

    Article  Google Scholar 

  • Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192–203. https://doi.org/10.1016/J.ISPRSJPRS.2017.03.022

    Article  Google Scholar 

  • Wang, N., Quesada, B., Xia, L., Butterbach-Bahl, K., Goodale, C. L., & Kiese, R. (2019). Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. Global Change Biology, 25(5), 1839–1851. https://doi.org/10.1111/GCB.14603

    Article  Google Scholar 

  • Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet, G., De Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K., & Timouk, F. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3–4), 241–258. https://doi.org/10.1016/J.AGRFORMET.2004.04.008

    Article  Google Scholar 

  • Wu, G., De Leeuw, J., Skidmore, A., Prins, H., & Liu, Y. (2008). Comparison of MODIS and Landsat TM5 images for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve China. International Journal of Remote Sensing, 29(8), 2183–2198. https://doi.org/10.1080/01431160701422254

    Article  Google Scholar 

  • Wullschleger, S. D., Childs, K. W., King, A. W., & Hanson, P. J. (2011). A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Tree Physiology, 31(6), 669–679. https://doi.org/10.1093/TREEPHYS/TPR051

    Article  Google Scholar 

  • Xu, C., McDowell, N. G., Fisher, R. A., Wei, L., Sevanto, S., Christoffersen, B. O., Weng, E., & Middleton, R. S. (2019). Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 9(12), 948–953. https://doi.org/10.1038/s41558-019-0630-6

    Article  CAS  Google Scholar 

  • Xu, K., Sühring, M., Metzger, S., Durden, D., & Desai, A. R. (2020). Can data mining help eddy covariance see the landscape? A Large-Eddy Simulation Study. Boundary-Layer Meteorology, 176(1), 85–103. https://doi.org/10.1007/S10546-020-00513-0/FIGURES/9

    Article  Google Scholar 

  • Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J., Zhang, Y., Ma, Y., & Song, L. (2018a). Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. Journal of Geophysical Research: Atmospheres, 123(16), 8674–8690. https://doi.org/10.1029/2018JD028447

    Article  Google Scholar 

  • Xu, K., Metzger, S., & Desai, A. R. (2018b). Surface-atmosphere exchange in a box: Space-time resolved storage and net vertical fluxes from tower-based eddy covariance. Agricultural and Forest Meteorology, 255, 81–91. https://doi.org/10.1016/J.AGRFORMET.2017.10.011

    Article  Google Scholar 

  • Xue, L., Fu, F., Chen, X., Liu, Y., Han, Q., Liao, S., & Wei, Q. (2021). Analysis on water use efficiency of Populus euphratica forest ecosystem in arid area. Theoretical and Applied Climatology, 145(1), 717–730. https://doi.org/10.1007/S00704-021-03636-7

    Article  Google Scholar 

  • Yao, F., Si, M., Li, W., & Wu, J. (2018). A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Science of the Total Environment, 618, 819–828. https://doi.org/10.1016/J.SCITOTENV.2017.08.209

    Article  CAS  Google Scholar 

  • Yao, N., Li, L., Feng, P., Feng, H., Li Liu, D., Liu, Y., Jiang, K., Hu, X., & Li, Y. (2020). Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment, 704, 135245. https://doi.org/10.1016/j.scitotenv.2019.135245

    Article  CAS  Google Scholar 

  • Yuan, J., Jose, S., Hu, Z., Pang, J., Hou, L., & Zhang, S. (2019). Biometric and Eddy covariance methods for examining the carbon balance of a Larix principis-rupprechtii Forest in the Qinling Mountains China. Forests, 9(2), 67. https://doi.org/10.3390/F9020067

    Article  Google Scholar 

  • Zanotelli, D., Montagnani, L., Manca, G., Scandellari, F., & Tagliavini, M. (2015). Net ecosystem carbon balance of an apple orchard. European Journal of Agronomy, 63, 97–104. https://doi.org/10.1016/J.EJA.2014.12.002

    Article  Google Scholar 

  • Zhou, W., Guan, K., Peng, B., Tang, J., Jin, Z., Jiang, C., Grant, R., & Mezbahuddin, S. (2021). Quantifying carbon budget, crop yields and their responses to environmental variability using the ecosys model for U.S. Midwestern agroecosystems. Agricultural and Forest Meteorology, 307, 108521. https://doi.org/10.1016/J.AGRFORMET.2021.108521

Download references

Acknowledgements

We are also grateful to the Associate Editor, Ph.D. Jose Alexander Elvir for helpful comments, and two anonymous reviewers for their invaluable feedback on an earlier version of this paper.

Funding

This research was funded by the Research Support Foundation of the Pernambuco State (FACEPE, APQ-0215–5.01/10 and APQ-1159–1.07/14), the National Council for Scientific and Technological Development (CNPq) through the fellowship of the Research Productivity Program (PQ 309421/2018–7), and the Coordination for the Improvement of Higher Education Personnel (CAPES—Finance Code 001) for funding the research and study grants.

Author information

Authors and Affiliations

Authors

Contributions

A.M.R.F.J.: conceptualization, methodology, investigation, software, data processing, writing—original draft. J.E.F.M.: conceptualization, methodology, writing—review. L.S.B.S. and T.G.F.S.: conceptualization, methodology, writing—review and editing and funding acquisition. All authors contributed and reviewed the manuscript.

Corresponding author

Correspondence to Alexandre Maniçoba da Rosa Ferraz Jardim.

Ethics declarations

Ethical approval

All authors have read and understood the statement of policy of interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rosa Ferraz Jardim, A.M., de Morais, J.E.F., de Souza, L.S.B. et al. Understanding interactive processes: a review of CO2 flux, evapotranspiration, and energy partitioning under stressful conditions in dry forest and agricultural environments. Environ Monit Assess 194, 677 (2022). https://doi.org/10.1007/s10661-022-10339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10339-7

Keywords

Navigation