Skip to main content

Advertisement

Log in

Integrated assessment of drought vulnerability for water resources management of Bina basin in Central India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Drought is an extreme event and its frequency is expected to increase in future under the imminent threats of climate change. The areas vulnerable to drought are increasing due to increase in the spatial extent and severity of droughts. This necessitates the need for development of an integrated framework for assessment of drought vulnerability, which will be vital for water resources management policies focused towards such vulnerable areas. An integrated drought vulnerability assessment framework has been developed considering the physical indicators that vary spatially, social indicators that vary spatially but their temporal variation may be at longer time-frames, and spatio-temporal drought indicators that vary spatially and temporally during various months during drought years. This framework has been tested for Bina basin located in the drought prone Bundelkhand region of Madhya Pradesh. The drought indicators used in the study include (i) Standardized Precipitation Index (SPI) for evaluating meteorological drought characteristics, (ii) Surface water Drought Index (SDI) for evaluating streamflow drought characteristics, and (iii) Groundwater Drought Index (GDI) for evaluating groundwater drought characteristics. Groundwater levels are being observed at quarterly (3 monthly) time step only. So the relationships between GDI and 3-m SPI, 6-m SPI, and 12-m SPI have been investigated. Based on the best correlation, the 12-m SPI can be used to represent the groundwater drought in Bina basin and has therefore been used to assess the monthly variability in the groundwater drought characteristics. The spatially varying physical indicators including basin reach (elevation band), land use pattern and soil type; the spatio-temporal drought indicators including soil moisture drought, surface water drought and groundwater drought, rainfall departure and number of consecutive dry days; and the spatially varying social indicators including infants and young children, illiterate population, marginal workers and rural population have been used for the development of a Drought Vulnerability Index (DVI). The integrated drought vulnerability assessment framework has been conceptualized on the basis of DVI. Four vulnerability classes have been defined and the study area falls in mild to moderate vulnerable class, based on the analysis carried out for the various drought years in the basin. Appropriate drought management plans and mitigation strategies need to be developed to target these vulnerable areas in Bina basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Some data used in the study including rainfall, river flow, and groundwater levels which are of classified nature were provided by third party (Water Resources Department, Govt. of Madhya Pradesh, India). Direct request for these materials may be made to the provider as indicated in the acknowledgments.

References

  • Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 622, 672–686. https://doi.org/10.1016/j.scitotenv.2019.01.278

    Article  CAS  Google Scholar 

  • Alamdarloo, H., & E., Khosravi, H., Nasabpour, S., Gholami, A. (2020). Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques. Journal of Arid Land, 12(6), 984–1000. https://doi.org/10.1007/s40333-020-0096-4

    Article  Google Scholar 

  • Beran, M. A., & Rodier, J. A. (1985). Hydrological aspects of drought. Studies and reports in hydrology (pp. 39). UNESCO – WMO, Ginebra.

  • Bonaccorso, B., Cancelliere, A., & Rossi, G. (2003). An analytical formulation of return period of drought severity. Stochastic Environmental Research and Risk Assessment, 17(3), 157–174. https://doi.org/10.1007/s00477-003-0127-7

    Article  Google Scholar 

  • Bruce, J. P. (1994). Natural disaster reduction and global change. Bulletin of the American Meteorological Society, 75, 1831–1835.

    Article  Google Scholar 

  • Carrao, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124. https://doi.org/10.1016/j.gloenvcha.2016.04.012

    Article  Google Scholar 

  • Dabanli, I. (2018). Drought hazard, vulnerability and risk assessment in Turkey. Arabian Journal of Geosciences, 11, 538. https://doi-org.libproxy.viko.lt/10.1007/s12517-018-3867-x

  • Engström, J., Jafarzadegan, K., & Moradkhani, H. (2020). Drought vulnerability in the United States: An integrated assessment. Water, 12, 2033. https://doi.org/10.3390/w12072033

    Article  Google Scholar 

  • Ghosh, K. G. (2019). Spatial and temporal appraisal of drought jeopardy over the Gangetic West Bengal, eastern India. Geoenvironmental Disasters, 6(1), 1. https://doi.org/10.1186/s40677-018-0117-1

    Article  Google Scholar 

  • Guttman, N. B. (1999). Accepting the Standardized Precipitation Index. Journal of the American Water Resources Association, 35, 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x

    Article  Google Scholar 

  • Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., & Sebesvari, Z. (2019). Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environmental Research Letters, 14, 08300. https://doi.org/10.1088/1748-9326/ab225d

    Article  Google Scholar 

  • Hameed, M., Ahmadalipour, A., & Moradkhani, H. (2020). Drought and food security in the Middle East: An analytical framework. Agricultural and Forest Meteorology, 281, 107816. https://doi.org/10.1016/j.agrformet.2019.107816

  • Hayes, M. J., Svoboda, M. D., Wilhite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the Standardized Precipitation Index. Bulletin of the American Meteorological Society, 80, 429–438. https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2

    Article  Google Scholar 

  • Heim, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83, 1149–2116. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2

    Article  Google Scholar 

  • Hirway., et al. (2007). Multiple impacts of droughts and assessment of drought policy in major drought prone states in India. Project Report, Centre for Development Alternatives, Gujarat, India.

  • Hoque, M., Pradhan, B., Ahmed, N., & Alamri, A. (2021). Drought vulnerability assessment using geospatial techniques in southern Queensland, Australia. Sensors, 21, 6896. https://doi.org/10.3390/s21206896

    Article  Google Scholar 

  • IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 976). Cambridge University Press, Cambridge, UK.

  • Jain, et al. (2012). Impact of climate change on extreme drought events in Ken river basin, India. In O. F. Parry, J. P. Canziani, P. J. Palutikof, van der Linden, & C. E. Hanson (Eds.), ASABE Annual International Meeting, July 29 – August 1, 2012 (pp. 976).  Cambridge University Press, Cambridge, UK.

  • Kalisa, W., Zhang, J., Igbawua, T., Ujoh, F., Ebohon, O. J., Namugize, J. N., & Yao, F. (2020). Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agricultural Water Management, 237(1), 106195. https://doi.org/10.1016/j.agwat.2020.106195

    Article  Google Scholar 

  • Kamble, M. V., Ghosh, K., Rajeevan, M., & Samui, R. P. (2010). Drought monitoring over India through normalized difference vegetation index (NDVI). Mausam, 61(4), 537–546. https://doi.org/10.54302/mausam.v61i4.911

  • Kar, S. K., Thomas, T., Singh, R. M., & Patel, L. (2018). Integrated assessment of drought vulnerability using indicators for Dhasan basin in Bundelkhand region, Madhya Pradesh, India. Current Science, 115(2), 338–346. https://doi.org/10.18520/cs/v115/i2/338-346

    Article  Google Scholar 

  • Karimi, M., Melesse, A. M., Khosravi, K., Mamuye, M., & Zhang, J. (2019). Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin, Iran. In A. M. Melesse, W. Abtew, & G. Senay (Eds.), Extreme Hydrology and Climate Variability (pp. 343–353). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00026-9

  • Keellings, D., & Engström, J. (2019). The future of drought in the southeastern U.S.: projections from downscaled CMIP5 models. Water, 11, 259. https://doi.org/10.3390/w11020259

  • Khoshnazar, A., Perez, G. A. C., & Diaz, V. (2021). Spatiotemporal drought risk assessment considering resilience and heterogeneous vulnerability factors: Lempa Transboundary river basin in the central American dry corridor. Journal of Marine Science and Engineering, 9, 386. https://doi.org/10.3390/jmse9040386

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. 8th AMS Conference on Applied Climatology, American Meteorological Society, 179–184.

  • Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Rezaei, E. E., Nouri, H., Gerdener, H., Popat, E., Frischen, J., Naumann, G., Vogt, J. V., Walz, Y., Sebesvari, Z., & Hagenlocher, M. (2020). Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth Systems Sciences, 20, 695–712. https://doi.org/10.5194/nhess-20-695-2020

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Mohammad, A. H., Jung, H. C., Odeh, T., Bhuiyan, C., & Hussein, H. (2018). Understanding the impact of droughts in the Yarmouk Basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arabian Journal of Geosciences, 11, 103. https://doi.org/10.1007/s12517-018-3433-6

    Article  Google Scholar 

  • Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: A perspective on drought indices. Current Climate Change Reports, 4, 145–163. https://doi.org/10.1007/s40641-018-0098-x

    Article  Google Scholar 

  • Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water Resources Management, 23, 881–897. https://doi.org/10.1007/s11269-008-9305-1

    Article  Google Scholar 

  • Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., & Vogt, J. (2014). Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrology and Earth System Sciences, 18, 1591–1604. https://doi.org/10.5194/hess-18-1591-2014

    Article  Google Scholar 

  • Núñez, J., Vergara, A., Leyton, C., Metzkes, C., Mancilla, G., & Bettancourt, D. (2017). Reconciling drought vulnerability assessment using a convergent approach: Application to water security in the Elqui river bBasin, North-Central Chile. Water, 9, 589. https://doi.org/10.3390/w9080589

    Article  Google Scholar 

  • Obasi, G. O. P. (1994). WMO’s role in international decade for natural disaster reduction. Bulletin of the American Meteorological Society, 75, 1655–1661. https://doi.org/10.1175/1520-0477(1994)075<1655:WRITID>2.0.CO;2

    Article  Google Scholar 

  • Oladipo, E. O. (1985). A comparative performance analysis of three meteorological drought indices. Journal of Climatology, 5, 655–664. https://doi.org/10.1002/joc.3370050607

    Article  Google Scholar 

  • Palmer, W. C. (1965). Meteorological droughts. U.S. Department of Commerce Weather Bureau Research, Paper. (vol. 45, pp. 58).

  • Pandey, R. P., & Ramasastri, K. S. (2001). Relationship between the common climatic parameters and average drought frequency. Hydrological Processes, 15, 1019–1032. https://doi.org/10.1002/hyp.187

    Article  Google Scholar 

  • Pandey, R. P., Daradur, M., Jain, V., & Jain, M. (2016). Assessment of vulnerability to drought towards effective mitigation planning: The case of Ken river basin in India. Journal of Indian Water Resources Society, 36, 4.

    Google Scholar 

  • Peters, E., & van Lanen, H. A. J. (2000). Hydrological drought-groundwater. In Technical Report No. 6: Assessment of the Regional Impact of Droughts in Europe. University of Oslo, Norway.

  • Prabnakorn, S., Maskey, S., Suryadi, F. X., & de Fraiture, C. (2019). Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun river basin in Thailand. Natural Hazards, 97, 891–911. https://doi.org/10.1007/s11069-019-03681-6

    Article  Google Scholar 

  • Rajsekhar, D., Singh, V. P., & Mishra, A. K. (2015). Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. Journal of Geophysical Research: Atmospheres, 120, 6346–6378. https://doi.org/10.1002/2014JD022670

    Article  Google Scholar 

  • Rossi, G., & Cancelliere, A. (2002). Early warning of drought: development of a drought bulletin for Sicily. In Proc. 2nd International Conference on New trends in water and environmental engineering for safety and life: Eco-compatible solutions for aquatic environments. Capri, Italy (pp. 1–12).

  • Sahaa, S., Kundua, B., Chandra, P. G., Mukherjee, K., Pradhan, B., Dikshit, A., Maulud, N. A. K., & Alamrig, A. M. (2021). Spatial assessment of drought vulnerability using fuzzy analytical hierarchical process: A case study at the Indian state of Odisha. Geomatics, Natural Hazards and Risk, 12(1), 123–153. https://doi.org/10.1080/19475705.2020.1861114

  • Sahana, V., Mondal, A., & Sreekumar, P. (2021). Drought vulnerability and risk assessment in India: Sensitivity analysis and comparison of aggregation techniques. Journal of Environmental Management, 299, 113689. https://doi.org/10.1016/j.jenvman.2021.113689

    Article  CAS  Google Scholar 

  • Shewale, M. P., & Kumar, S. (2005). Climatological features of drought events in India. Meteorological Monograph, Climatology No. 21/2005, India Meteorological Department, Pune.

  • Shukla, S., & Wood, A. W. (2008). Use of a Standardized Runoff Index for characterizing hydrologic drought. Geophysical Research Letters, 35https://doi.org/10.1029/2007GL032487

  • Taleb, O., Mohammad, A. H., Hussein, H., Ismail, M., & Almomani, T. (2019). Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environment and Earth Science, 78, 40. https://doi.org/10.1007/s12665-018-8031-0

  • Tallaksen, M. L., & van Lanen, H. A. J. (2004). Hydrological drought-processes and estimation methods for stream flow and groundwater. Elsevier Sciences, The Netherlands.

  • Thomas, T., Nayak, P. C. & Ghosh, N. C. (2015). Spatiotemporal analysis of drought characterisitcs in Bundelkhand region of Central India using Standardised Precipitation Index. ASCE Journal of Hydrologic Engineering, 05015004–1. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001189

  • Thomas, T., Jaiswal, R. K., Galkate, R., Nayak, P. C., & Ghosh, N. C. (2016). Drought indicators based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in Central India. Natural Hazards. https://doi.org/10.1007/s11069-016-2149-8

    Article  Google Scholar 

  • Van Lanen, H. A. J., & Peters, E. (2000). Definition, effects and assessment of groundwater droughts. In Drought and drought mitigation in Europe. Kluwer Academic, Dordrecht.

  • White, G. F., Kates, R. W., & Burton, I. (2001). Knowing better and losing even more: The use of knowledge in hazard management.Global Environmental Change Part B. Environmental Hazards, 13, 81–92. https://doi.org/10.3763/ehaz.2001.0308

    Article  Google Scholar 

  • Wilhite, D. A., Hayes, M. J., & Svoboda, M. D. (2000a). Drought monitoring and assessment: status and trends in the United States. In Drought and drought mitigation in Europe (pp. 149–160). Kluwer Academic Publishers. http://digitalcommons.unl.edu/droughtfacpub. Accessed 10 May 2021.

  • Wilhite, D. A., Silvakumar, M. V. K., & Woods, D. A. (2000b). Early warning systems for drought preparedness and drought management. In Proc. Expert Group Meeting held in Lisbon, Portugal. Geneva, Switzerland: W. M. O.

  • Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At risk: Natural hazards, people’s vulnerability, and disasters (2nd ed.). New York.

    Google Scholar 

  • Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect of the length of record on the Standardised Precipitation Index calculation. International Journal of Climatology, 25(4), 505–520. https://doi.org/10.1002/joc.1142

    Article  Google Scholar 

  • Zarafshani, K., Sharafi, L., Azadi, H., Hosseininia, G. H., De Maeyer, P., & Witlox, F. (2012). Drought vulnerability assessment: The case of wheat farmers in western Iran. Global and Planetary Change, 98–99, 122–130. https://doi.org/10.1016/j.gloplacha.2012.08.012

    Article  Google Scholar 

  • Zhao, J., Zhang, Q., Zhu, X., Shen, Z., & Yu, H. (2020). Drought risk assessment in China: Evaluation framework and influencing factors. Geography and Sustainability, 1, 220–228. https://doi.org/10.1016/j.geosus.2020.06.005

    Article  Google Scholar 

  • Zhang, Q., Sun, P., Li, J., Xiao, M., & Singh, V. P. (2015). Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theoretical and Applied Climatology, 121, 1–2. https://doi.org/10.1007/s00704-014-1234-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Water Resources Department, Govt. of Madhya Pradesh, India, for providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Nayak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, T., Nayak, P.C. & Ventakesh, B. Integrated assessment of drought vulnerability for water resources management of Bina basin in Central India. Environ Monit Assess 194, 621 (2022). https://doi.org/10.1007/s10661-022-10300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10300-8

Keywords

Navigation