Skip to main content
Log in

Bias in PM2.5 measurements using collocated reference-grade and optical instruments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Optical PM2.5 measurements are sensitive to aerosol properties that can vary with space and time. Here, we compared PM2.5 measurements from collocated reference-grade (beta attenuation monitors, BAMs) and optical instruments (two DustTrak II and two DustTrak DRX) over 6 months. We performed inter-model (two different models), intra-model (two units of the same model), and inter-type (two different device types: optical vs. reference-grade) comparisons under ambient conditions. Averaged over our study period, PM2.5 measured concentrations were 46.0 and 45.5 μg m−3 for the two DustTrak II units, 29.8 and 38.4 μg m−3 for DRX units, and 18.3 and 19.0 μg m−3 for BAMs. The normalized root square difference (NRMSD; compares PM2.5 measurements from paired instruments of the same type) was ~ 5% (DustTrak II), ~ 27% (DRX), and ~ 15% (BAM). The normalized root mean square error (NRMSE; compares PM2.5 measurements from optical instruments against a reference instrument) was ~ 165% for DustTrak II, ~ 74% after applying literature-based humidity correction and ~ 27% after applying both the humidity and BAM corrections. Although optical instruments are highly precise in their PM2.5 measurements, they tend to be strongly biased relative to reference-grade devices. We also explored two different methods to compensate for relative humidity bias and found that the results differed by ~ 50% between the two methods. This study highlights the limitations of adopting a literature-derived calibration equation and the need for conducting local model-specific calibration. Moreover, this is one of the few studies to perform an intra-model comparison of collocated reference-grade devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Apte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A., & Nazaroff, W. W. (2011). Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmospheric Environment, 45(26), 4470–4480. https://doi.org/10.1016/j.atmosenv.2011.05.028

    Article  CAS  Google Scholar 

  • Both, A. F., Balakrishnan, A., Joseph, B., & Marshall, J. D. (2011). Spatiotemporal aspects of real-time PM2. 5: Low-and middle-income neighborhoods in Bangalore, India. Environmental Science & Technology, 45(13), 5629–5636. https://doi.org/10.1021/es104331w

  • Chakrabarti, B., Fine, P. M., Delfino, R., & Sioutas, C. (2004). Performance evaluation of the active-flow personal DataRAM PM2. 5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmospheric Environment, 38(20), 3329–3340. https://doi.org/10.1016/j.atmosenv.2004.03.007

  • Chu, H. J., Ali, M. Z., & He, Y. C. (2020). Spatial calibration and PM2.5 mapping of low-cost air quality sensors. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-79064-w

  • Chung, A., Chang, D. P., Kleeman, M. J., Perry, K. D., Cahill, T. A., Dutcher, D., & Stroud, K. (2001). Comparison of real-time instruments used to monitor airborne particulate matter. Journal of the Air & Waste Management Association, 51(1), 109–112. https://doi.org/10.1080/10473289.2001.10464254

    Article  CAS  Google Scholar 

  • Goel, R., Gani, S., Guttikunda, S. K., Wilson, D., & Tiwari, G. (2015). On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi. Atmospheric Environment, 123, 129–138. https://doi.org/10.1016/j.atmosenv.2015.10.037

    Article  CAS  Google Scholar 

  • Guttikunda, S. K., Nishadh, K. A., Gota, S., Singh, P., Chanda, A., Jawahar, P., & Asundi, J. (2019). Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmospheric Pollution Research, 10(3), 941–953. https://doi.org/10.1016/j.apr.2019.01.002

    Article  CAS  Google Scholar 

  • Hagan, D. H., & Kroll, J. H. (2020). Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric Measurement Techniques, 13(11), 6343–6355. https://doi.org/10.5194/amt-13-6343-2020

    Article  CAS  Google Scholar 

  • Health Effects Institute (HEI). (2020). State of Global Air 2020. Special Report.

    Google Scholar 

  • Hinds, W. C. (1999). Aerosol technology: Properties, behavior, and measurement of airborne particles. John Wiley & Sons.

    Google Scholar 

  • Holstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. J. A. M. T. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques, 7(4), 1121–1131. https://doi.org/10.5194/amt-7-1121-2014

    Article  Google Scholar 

  • Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmospheric Measurement Techniques, 11(8), 4883–4890. https://doi.org/10.5194/amt-11-4883-2018

    Article  CAS  Google Scholar 

  • Kim, J. Y., Magari, S. R., Herrick, R. F., Smith, T. J., Christiani, D. C., & Christiani, D. C. (2004). Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. Journal of Occupational and Environmental Hygiene, 1(11), 707–715. https://doi.org/10.1080/15459620490515833

    Article  CAS  Google Scholar 

  • Kingham, S., Durand, M., Aberkane, T., Harrison, J., Wilson, J. G., & Epton, M. (2006). Winter comparison of TEOM, MiniVol and DustTrak PM10 monitors in a woodsmoke environment. Atmospheric Environment, 40(2), 338–347. https://doi.org/10.1016/j.atmosenv.2005.09.042

    Article  CAS  Google Scholar 

  • Kumar, M. K., Sreekanth, V., Salmon, M., Tonne, C., & Marshall, J. D. (2018). Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions. Environmental Pollution, 239, 803–811. https://doi.org/10.1016/j.envpol.2018.04.057

    Article  CAS  Google Scholar 

  • Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., & Timonen, H. (2020). Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmospheric Measurement Techniques, 13(5), 2413–2423. https://doi.org/10.5194/amt-13-413-2020

    Article  CAS  Google Scholar 

  • McNamara, M. L., Noonan, C. W., & Ward, T. J. (2011). Correction factor for continuous monitoring of wood smoke fine particulate matter. Aerosol and Air Quality Research, 11(3), 315. https://doi.org/10.4209/aaqr.2010.08.0072

    Article  CAS  Google Scholar 

  • Moosmüller, H., Arnott, W. P., Rogers, C. F., Bowen, J. L., Gillies, J. A., Pierson, W. R., & Norbeck, J. M. (2001). Time resolved characterization of diesel particulate emissions. 1. Instruments for particle mass measurements. Environmental Science & Technology35(4), 781–787. https://doi.org/10.1021/es0013935

  • Noble, C. A., Vanderpool, R. W., Peters, T. M., McElroy, F. F., Gemmill, D. B., & Wiener, R. W. (2001). Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Science & Technology, 34(5), 457–464. https://doi.org/10.1080/02786820121582

    Article  CAS  Google Scholar 

  • Rivas, I., Mazaheri, M., Viana, M., Moreno, T., Clifford, S., He, C., & Querol, X. (2017). Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Science of the Total Environment, 584, 849–855. https://doi.org/10.1016/j.scitotenv.2017.01.129

    Article  CAS  Google Scholar 

  • Sanchez, M., Ambros, A., Milà, C., Salmon, M., Balakrishnan, K., Sambandam, S., & Tonne, C. (2018). Development of land-use regression models for fine particles and black carbon in peri-urban South India. Science of the Total Environment, 634, 77–86. https://doi.org/10.1016/j.scitotenv.2018.03.308

    Article  CAS  Google Scholar 

  • Viana, M., Rivas, I., Reche, C., Fonseca, A. S., Pérez, N., Querol, X., & Sunyer, J. (2015). Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmospheric Environment, 123, 220–228. https://doi.org/10.1016/j.atmosenv.2015.10.076

    Article  CAS  Google Scholar 

  • Wang, X., Chancellor, G., Evenstad, J., Farnsworth, J. E., Hase, A., Olson, G. M., & Agarwal, J. K. (2009). A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Science and Technology, 43(9), 939–950. https://doi.org/10.1080/02786820903045141

    Article  CAS  Google Scholar 

  • Yanosky, J. D., Williams, P. L., & MacIntosh, D. L. (2002). A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air. Atmospheric Environment, 36(1), 107–113. https://doi.org/10.1016/S1352-2310(01)00422-8

  • Zhu, Y., Smith, T. J., Davis, M. E., Levy, J. I., Herrick, R., & Jiang, H. (2011). Comparing gravimetric and real-time sampling of PM2.5 concentrations inside truck cabins. Journal of occupational and Environmental Hygiene, 8(11), 662–672. https://doi.org/10.1080/15459624.2011.617234

Download references

Funding

VS is grateful to the MacArthur Foundation for providing financial support to the Center for Study of Science, Technology and Policy for conducting air-pollution studies in Bengaluru, Karnataka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sreekanth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwaha, M., Sreekanth, V., Upadhya, A.R. et al. Bias in PM2.5 measurements using collocated reference-grade and optical instruments. Environ Monit Assess 194, 610 (2022). https://doi.org/10.1007/s10661-022-10293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10293-4

Keywords

Navigation