Skip to main content
Log in

Proposition of critical thresholds for copper and zinc transfer to solution in soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Several studies have reported increased copper (Cu) and zinc (Zn) levels in agricultural soils worldwide, mainly due to organic waste and successive leaf fungicide applications in crops. However, the critical transfer thresholds in soils, which can indicate the real risk of environmental contamination and toxicity to plants, remain poorly understood. This study aimed to define the maximum Cu and Zn adsorption capacity (MAC) and threshold (T-Cu and T-Zn) in different soils in Southern Brazil, which present different clay and organic matter (OM) levels. Bw (Oxisol) and A horizon (Inceptisol) samples were used to obtain soils with clay and OM contents ranging from 4 to 70% and from 0.5 to 9.5%, respectively. Cu and Zn adsorption curves were plotted for MAC determination purposes. Based on Cu and Zn MAC values, different concentrations of these elements were applied to the soils for subsequent quantification of available Cu and Zn levels (Mehlich-1 and water). T-Cu in soils with different clay contents ranged from 81 to 595 mg Cu kg−1, whereas T-Zn, from 195 to 378 mg Zn kg−1. T-Cu in soils with different OM levels ranged from 97 to 667 mg Cu kg−1, whereas T-Zn, from 226 to 495 mg Zn kg−1. T-Cu can be calculated through the equation: T-Cu = 75 × (%CL0.34) × (%OM0.39), whereas T-Zn: T-Zn = 2.7 × (CL) + 126 (by taking into consideration the clay content) and T-Zn = − 9.3 × (%OM)2 + 92.4 × (%OM) + 66 (by taking into consideration OM content). T-Cu and T-Zn can be used by researchers, inspection bodies, technical assistance institutions, and farmers as safe indicators to monitor the potential for environmental contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174(February), 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  Google Scholar 

  • Babcsányi, I., Chabaux, F., Granet, M., Meite, F., Payraudeau, S., Duplay, J., & Imfeld, G. (2016). Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. Science of the Total Environment, 557–558, 154–162. https://doi.org/10.1016/j.scitotenv.2016.03.037

    Article  CAS  Google Scholar 

  • Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., et al. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307. https://doi.org/10.1016/j.chemosphere.2016.07.104

    Article  CAS  Google Scholar 

  • Brunetto, G., Ferreira, P. A. A., Melo, G. W., Ceretta, C. A., & Moreno, T. (2017). Heavy metals in vineyards and orchard soils. Revista Brasileira de Fruticultura, 39(2), e-263. https://doi.org/10.1590/0100-29452017

  • Brunetto, G., Miotto, A., Ceretta, C. A., Schmitt, D. E., Heinzen, J., de Moraes, M. P., et al. (2014). Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 60(5), 609–624. https://doi.org/10.1080/03650340.2013.826348

    Article  CAS  Google Scholar 

  • Brunetto, G., Souza, R. O. S., Piccin, R., Bellinaso, R. J. S., Kaminski, J., Ceretta, C. A., et al. (2019). Effectiveness of a rapid soil incubation method for determining potential acidity of soils in Rio Grande do Sul, Brazil. Ciencia Rural, 49(2), 1–5. https://doi.org/10.1590/0103-8478cr20180350

    Article  CAS  Google Scholar 

  • Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20(4), 384–397. https://doi.org/10.1080/15226514.2017.1365340

    Article  CAS  Google Scholar 

  • Casagrande, José Carlos., Jordão, Camila Beig, Alleoni, Luís Reynaldo Ferracciú., & Camargo, Otávio Antônio de. (2004). Copper desorption in a soil with variable charge. Scientia Agricola, 61(2), 196–202. https://doi.org/10.1590/S0103-90162004000200012.

    Article  CAS  Google Scholar 

  • Casali, C. A., Moterle, D. F., dos Rheinheimer, D., & S., Brunetto, G., Corcini, A. L. M., Kaminski, J., & Melo, G. W. B. de. (2008). Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Revista Brasileira De Ciência Do Solo, 32(4), 1479–1487. https://doi.org/10.1590/s0100-06832008000400012

    Article  CAS  Google Scholar 

  • CONAMA - Conselho Nacional do Meio Ambiente. Resolução CONAMA 420/2009. , Pub. L. No. 420 (2009). Brasil. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620

  • Cui, H., Li, H., Zhang, S., Yi, Q., Zhou, J., Fang, G., & Zhou, J. (2020). Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere, 242, 125252. https://doi.org/10.1016/j.chemosphere.2019.125252

    Article  CAS  Google Scholar 

  • Cui, J., li, Zhao, Y. ping, Li, J. shan, Beiyuan, J. zi, Tsang, D. C. W., Poon, C. sun, et al. (2018). Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 232, 375–384. https://doi.org/10.1016/j.envpol.2017.09.040

    Article  CAS  Google Scholar 

  • De Conti, L., Ceretta, C. A., Melo, G. W. B., Tiecher, T. L., Silva, L. O. S., Garlet, L. P., et al. (2019). Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 216, 147–156. https://doi.org/10.1016/j.chemosphere.2018.10.134

    Article  CAS  Google Scholar 

  • Diagboya, P. N., Olu-Owolabi, B. I., & Adebowale, K. O. (2015). Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research, 22(13), 10331–10339. https://doi.org/10.1007/s11356-015-4241-0

    Article  CAS  Google Scholar 

  • Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160–173. https://doi.org/10.1016/j.cnsns.2015.09.009

    Article  Google Scholar 

  • Elbana, T. A., Magdi Selim, H., Akrami, N., Newman, A., Shaheen, S. M., & Rinklebe, J. (2018). Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma, 324(December 2017), 80–88. https://doi.org/10.1016/j.geoderma.2018.03.019

  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (1997). Manual de métodos de análise de solo, (2nd ed., p. 212). Rio de Janeiro: Embrapa-CNPS.

  • Fernández-Calviño, D., Soler-Rovira, P., Polo, A., Arias-Estévez, M., & Plaza, C. (2010). Influence of humified organic matter on copper behavior in acid polluted soils. Environmental Pollution, 158(12), 3634–3641. https://doi.org/10.1016/j.envpol.2010.08.005

    Article  CAS  Google Scholar 

  • Fernández-Calviño, D., Pateiro-Moure, M., Nóvoa-Muñoz, J. C., Garrido-Rodríguez, B., & Arias-Estévez, M. (2012). Zinc distribution and acid-base mobilisation in vineyard soils and sediments. Science of the Total Environment, 414, 470–479. https://doi.org/10.1016/j.scitotenv.2011.10.033

    Article  CAS  Google Scholar 

  • Gatiboni, L. C., Brunetto, G., Kaminski, J., Dos Santos Rheinheimer, D., Ceretta, C. A., & Basso, C. J. (2008). Soil phosphorus forms after successive pig slurry application in a native pasture. Revista Brasileira De Ciencia Do Solo, 32(4), 1753–1761. https://doi.org/10.1590/s0100-06832008000400040

    Article  Google Scholar 

  • Gatiboni, L. C., Smyth, T. J., Schmitt, D. E., Cassol, P. C., & de Oliveira, C. M. B. (2015). Limites críticos ambientais de fósforo no solo para avaliar seu risco de transferência para águas superficiais no estado de Santa Catarina, Brasil. Revista Brasileira De Ciencia Do Solo, 39(4), 1225–1234. https://doi.org/10.1590/01000683rbcs20140461

    Article  CAS  Google Scholar 

  • Hammerschmitt, R. K., Tiecher, T. L., Facco, D. B., Silva, L. O. S., Schwalbert, R., Drescher, G. L., et al. (2020). Copper and zinc distribution and toxicity in ‘Jade’ / ‘Genovesa’ young peach tree. Scientia Horticulturae, 259(July 2019), 108763. https://doi.org/10.1016/j.scienta.2019.108763

  • He, K., Sun, Z., Hu, Y., Zeng, X., Yu, Z., & Cheng, H. (2017). Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environmental Science and Pollution Research, 24(10), 9387–9398. https://doi.org/10.1007/s11356-017-8548-x

    Article  CAS  Google Scholar 

  • Hu, Q., Xiao, Z., Xiong, X., Zhou, G., & Guan, X. (2015). Predicting heavy metals’ adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics. Journal of Environmental Sciences (China), 27(C), 207–216. https://doi.org/10.1016/j.jes.2014.05.036

  • Huang, B., Li, Z., Huang, J., Guo, L., Nie, X., Wang, Y., et al. (2014). Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil. Journal of Hazardous Materials, 264, 176–183. https://doi.org/10.1016/j.jhazmat.2013.10.074

    Article  CAS  Google Scholar 

  • Jović, M., Šljivić-Ivanović, M., Dimović, S., Marković, J., & Smičiklas, I. (2017). Sorption and mobility of Co(II) in relation to soil properties. Geoderma, 297, 38–47. https://doi.org/10.1016/j.geoderma.2017.03.006

    Article  CAS  Google Scholar 

  • Karaca, O., Cameselle, C., & Reddy, K. R. (2018). Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Biotechnology, 17(1), 205–228. https://doi.org/10.1007/s11157-017-9453-y

    Article  CAS  Google Scholar 

  • Li, J. S., Beiyuan, J., Tsang, D. C. W., Wang, L., Poon, C. S., Li, X. D., & Fendorf, S. (2017). Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 182, 31–39. https://doi.org/10.1016/j.chemosphere.2017.05.019

    Article  CAS  Google Scholar 

  • Li, Q., Du, H., Chen, W., Hao, J., Huang, Q., Cai, P., & Feng, X. (2018). Aging shapes the distribution of copper in soil aggregate size fractions. Environmental Pollution, 233, 569–576. https://doi.org/10.1016/j.envpol.2017.10.091

    Article  CAS  Google Scholar 

  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., et al. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  • Manzano, R., Rosende, M., Leza, A., Esteban, E., Peñalosa, J. M., Miró, M., & Moreno-Jiménez, E. (2019). Complementary assessment of As, Cu and Zn environmental availability in a stabilised contaminated soil using large-bore column leaching, automatic microcolumn extraction and DGT analysis. Science of the Total Environment, 690, 217–225. https://doi.org/10.1016/j.scitotenv.2019.06.523

    Article  CAS  Google Scholar 

  • Mishra, S. R., Chandra, R., Kaila, A., & J., & Darshi B., S. (2017). Kinetics and isotherm studies for the adsorption of metal ions onto two soil types. Environmental Technology and Innovation, 7, 87–101. https://doi.org/10.1016/j.eti.2016.12.006

    Article  CAS  Google Scholar 

  • O’Connor, D., Peng, T., Zhang, J., Tsang, D. C. W., Alessi, D. S., Shen, Z., et al. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619–620, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132

    Article  CAS  Google Scholar 

  • Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., & Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of the Total Environment, 658, 1559–1573. https://doi.org/10.1016/j.scitotenv.2018.12.243

    Article  CAS  Google Scholar 

  • Peng, L., Liu, P., Feng, X., Wang, Z., Cheng, T., Liang, Y., et al. (2018). Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochimica Et Cosmochimica Acta, 224, 282–300. https://doi.org/10.1016/j.gca.2018.01.014

    Article  CAS  Google Scholar 

  • Qin, X. Y., Chai, M. R., Ju, D. Y., & Hamamoto, O. (2018). Investigation of plating wastewater treatment technology for chromium, nickel and copper. IOP Conference Series: Earth and Environmental Science, 191(1). https://doi.org/10.1088/1755-1315/191/1/012006

  • Read, D. S., Matzke, M., Gweon, H. S., Newbold, L. K., Heggelund, L., Ortiz, M. D., et al. (2016). Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research, 23(5), 4120–4128. https://doi.org/10.1007/s11356-015-4538-z

    Article  CAS  Google Scholar 

  • Refaey, Y., Jansen, B., Parsons, J. R., de Voogt, P., Bagnis, S., Markus, A., et al. (2017). Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment. Journal of Environmental Management, 187, 273–285. https://doi.org/10.1016/j.jenvman.2016.11.056

    Article  CAS  Google Scholar 

  • Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., et al. (2013). Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental pollution (Barking, Essex : 1987), 183, 234–242. https://doi.org/10.1016/j.envpol.2012.10.006

  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A. V. L., Francisco, J., Coelho, M. R., Almeida, J. A., Cunha, T. J. F., & Oliveira, J. B. (2018). Sistema brasileiro de classificação de solos (3rd ed., p. 356). Embrapa: Brasília.

  • Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Science of the Total Environment, 263(1–3), 11–22. https://doi.org/10.1016/S0048-9697(00)00606-9

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2015). Immobilization of soil copper using organic and inorganic amendments. Journal of Plant Nutrition and Soil Science, 178(1), 112–117. https://doi.org/10.1002/jpln.201400400

    Article  CAS  Google Scholar 

  • Shi, J., Wu, Q., Zheng, C., & Yang, J. (2018). The interaction between particulate organic matter and copper, zinc in paddy soil. Environmental Pollution, 243, 1394–1402. https://doi.org/10.1016/j.envpol.2018.09.085

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). USDA-Natural Resources Conservation Service, Washington DC.

  • Sołek-Podwika, K., Ciarkowska, K., & Kaleta, D. (2016). Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland). Journal of Environmental Management, 180, 450–458. https://doi.org/10.1016/j.jenvman.2016.05.074

    Article  CAS  Google Scholar 

  • Souza, M., Müller Júnior, V., Kurtz, C., dos Santos Ventura, B., Lourenzi, C. R., Lazzari, C. J. R., et al. (2021). Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops. Soil and Tillage Research, 208(October 2019). https://doi.org/10.1016/j.still.2020.104897

  • Sparks, D. L. (1999). Soil Physical Chemistry. (D. L. Sparks, Ed.) (2nd ed.). CRC Press.

  • Sun, W., & Zhang, X. (2017). Estimating soil zinc concentrations using reflectance spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 58, 126–133. https://doi.org/10.1016/j.jag.2017.01.013

    Article  Google Scholar 

  • Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 645, 1522–1553. https://doi.org/10.1016/j.scitotenv.2018.07.103

    Article  CAS  Google Scholar 

  • Tahervand, S., & Jalali, M. (2017). Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH. Journal of Geochemical Exploration, 181, 148–159. https://doi.org/10.1016/j.gexplo.2017.07.005

    Article  CAS  Google Scholar 

  • Zhang, X., Yan, L., Li, J., & Yu, H. (2020). Adsorption of heavy metals by L-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies. Journal of Colloid and Interface Science, 562, 149–158. https://doi.org/10.1016/j.jcis.2019.12.028

    Article  CAS  Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais (2nd ed., p. 174). Porto Alegre, Universidade Federal do Rio Grande do Sul.

  • Telkapalliwar, N. G., & Shivankar, V. M. (2018). Adsorption of zinc onto microwave assisted carbonized Acacia nilotica bark. Materials Today: Proceedings, 5(10), 22694–22705. https://doi.org/10.1016/j.matpr.2018.06.646

    Article  CAS  Google Scholar 

  • Tiecher, Tadeu L., Soriani, H. H., Tiecher, T., Ceretta, C. A., Nicoloso, F. T., Tarouco, C. P., et al. (2018). The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, 148(September 2017), 985–994. https://doi.org/10.1016/j.ecoenv.2017.11.074

  • Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., et al. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222(January), 203–212. https://doi.org/10.1016/j.scienta.2017.05.026

    Article  CAS  Google Scholar 

  • Tiecher, T. L., Ceretta, C. A., Comin, J. J., Girotto, E., Miotto, A., de Moraes, M. P., et al. (2013). Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira De Ciencia Do Solo, 37(3), 812–824. https://doi.org/10.1590/S0100-06832013000300028

    Article  CAS  Google Scholar 

  • Toselli, M., Baldi, E., Marcolini, G., Malaguti, D., Quartieri, M., Sorrenti, G., & Marangoni, B. (2008). Response of potted pear trees to increasing copper concentration in sandy and clay-loam soils. Journal of Plant Nutrition, 31(12), 2089–2104. https://doi.org/10.1080/01904160802459609

    Article  CAS  Google Scholar 

  • Violante, A., Krishnamurti, G., & Pigna, M. (2008). Factors affecting the sorption-desorption of trace elements in soil environments. In A. Violante, P. Huang, & G. Gadd (Eds.), Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. John Wiley & Sons, Inc.

  • Wang, L., Chen, L., Tsang, D. C. W., Li, J. S., Baek, K., Hou, D., et al. (2018). Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 199, 69–76. https://doi.org/10.1016/j.jclepro.2018.07.165

    Article  CAS  Google Scholar 

  • WHO - World Health Organization. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. 541p.

  • Yang, J., Liu, J., Dynes, J. J., Peak, D., Regier, T., Wang, J., et al. (2014). Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Environmental Science and Pollution Research, 21(4), 2943–2954. https://doi.org/10.1007/s11356-013-2214-8

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed by both the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq), and the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), who financed the project “Obtenção de limites ambientais de Cu e Zn para diferentes tipos de solos do Sul do Brasil” (Obtaining environmental limits of Cu and Zn for different types of soils in southern Brazil), approved in the public call FAPESC Nº 26/2020. CNPq provided research productivity grants awarded to professors Jucinei José Comin, Cledimar Rogério Lourenzi, Cláudio Roberto Fonsêca Sousa Soares, Arcângelo Loss, and Gustavo Brunetto.

Author information

Authors and Affiliations

Authors

Contributions

Gildean Portela Morais: conceptualization, methodology, investigation, writing — original draft, writing—review and editing, visualization. Jucinei José Comin: conceptualization, investigation, writing — review and editing. Cledimar Rogério Lourenzi: conceptualization, investigation, writing — review and editing. Tadeu Luis Tiecher: conceptualization, investigation, writing — review and editing. Cláudio Roberto Fonsêca Sousa Soares: conceptualization, investigation, writing — review and editing. Arcângelo Loss: conceptualization, investigation, writing—review and editing. Luciano Colpo Gatiboni: conceptualization, investigation, writing — review and editing. Juliana Gress Bortoloni: conceptualization and investigation. Guilherme Wilbert Ferreira: conceptualization, writing — review and editing. Eduardo Maciel Haitzmann dos Santos: conceptualization, writing — review and editing. Gustavo Brunetto: conceptualization, resources, writing — original draft, writing — review and editing, supervision, project administration.

Corresponding author

Correspondence to Guilherme Wilbert Ferreira.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, G.P., Comin, J.J., Lourenzi, C.R. et al. Proposition of critical thresholds for copper and zinc transfer to solution in soils. Environ Monit Assess 194, 623 (2022). https://doi.org/10.1007/s10661-022-10278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10278-3

Keywords

Navigation