Skip to main content

Advertisement

Log in

Drought index predictability for historical and future periods across the Southern plain of Nepal Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Drought episodes across the Himalayas are inevitable due to rapidly increasing atmospheric temperatures and uncertainties in rainfall patterns. Tarai of Nepal is a tropical region located in the foothills of the Central Himalaya as a country’s food granary with a contribution of over 50% to the entire country’s agricultural production. However, there is a lack of detailed studies exploring the spatiotemporal occurrence of drought in these regions under the changing climate. In this study, we used the ensemble of nine climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under two shared socio-economic pathways (SSPs), namely SSP245 (an intermediate development pathway) and SSP585 (a high development pathway), to assess anticipated drought during the mid-century. We used bias-corrected gridded data from the Worldclim to project drought events by the end of the mid-century based on the historical period (1989–2018). We computed historical and projected Thornthwaite moisture index (TMI) to evaluate soil moisture conditions on a seasonal scale for the Tarai region’s Eastern, Central, and Western parts. The model ensemble projected a significant increase in precipitation and temperature for the entire Tarai by the end of mid-century. However, the winter and spring seasons are projected to suffer precipitation deficiency and a temperature rise. Our results indicated that the Eastern Tarai would likely experience a decrease in winter precipitation. We emphasize that the presented spatiotemporal pattern of the MI will be instrumental in addressing the irrigation facility’s needs, choice, and rotation of crops under the changing climate scenarios and in improving our mitigation measures and adaptation plans for sustainability of the agriculture in drought-prone areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available upon request to the corresponding author.

References

  • Adedeji, O., Olusola, A., James, G., Shaba, H. A., Orimoloye, I. R., Singh, S. K., & Adelabu, S. (2020). Early warning systems development for agricultural drought assessment in Nigeria. Environmental Monitoring and Assessment, 192(12). https://doi.org/10.1007/s10661-020-08730-3

  • Adhikari, A., Hansen, A. J., & Rangwala, I. (2019). Ecological water stress under projected climate change across hydroclimate gradients in the North-Central United States. Journal of Applied Meteorology and Climatology, 58(9), 2103–2114. https://doi.org/10.1175/JAMC-D-18-0149.1

    Article  Google Scholar 

  • Adhikari, S. (2018). Drought impact and adaptation strategies in the mid-hill farming system of western nepal. Environments - MDPI, 5(9), 1–12. https://doi.org/10.3390/environments5090101

    Article  Google Scholar 

  • Ahmed, H. G. M. D., Sajjad, M., Li, M., Azmat, M. A., Rizwan, M., Maqsood, R. H., & Khan, S. H. (2019). Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability (Switzerland), 11(9), 1–17. https://doi.org/10.3390/su11092584

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., & Raes, D. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 Table of Contents. 300(9).

  • Baniya, B., Tang, Q., Xu, X., Haile, G. G., & Chhipi-Shrestha, G. (2019). Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors (Switzerland), 19(2). https://doi.org/10.3390/s19020430

  • Barrow, C. J. (1992). World atlas of desertification (United nations environment programme), edited by N. Middleton and D. S. G. Thomas. Edward Arnold, London, 1992. isbn 0 340 55512 2, £89.50 (hardback), ix + 69 pp. Land Degradation and Development, 3(4), 249–249. https://doi.org/10.1002/ldr.3400030407

  • Bharati, L., Gurung, P., Maharjan, L., & Bhattarai, U. (2016). Past and future variability in the hydrological regime of the Koshi Basin. Nepal. Hydrological Sciences Journal, 61(1), 79–93. https://doi.org/10.1080/02626667.2014.952639

    Article  Google Scholar 

  • Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena, 181(October 2018), 104082. https://doi.org/10.1016/j.catena.2019.104082

  • Bista, R., Chhetri, P. K., Johnson, J. S., Sinha, A., & Shrestha, K. B. (2021). Climate-driven differences in growth performance of cohabitant fir and birch in a subalpine forest in Dhorpatan Nepal. Forests, 12(9), 1137. https://doi.org/10.3390/f12091137

    Article  Google Scholar 

  • Campbell, G. S., & Norman, J. M. (1998). Radiation basics. In An Introduction to Environmental Biophysics (pp. 147–165). Springer New York. https://doi.org/10.1007/978-1-4612-1626-1_10

  • CBS (2012) National Population and Housing Census 2011 (National Report). Central Bureau of Statistics (CBS), Government of Nepal. Available at: https://unstats.un.org/unsd/demographic/sources/census/wphc/Nepal/Nepal-Census-2011-Vol1.pdf. Accessed: 23 March 2021.

  • Chang, T., Hansen, A. J., & Piekielek, N. (2014). Patterns and variability of projected bioclimatic habitat for Pinus albicaulisin the greater yellowstone area. PLoS ONE, 9(11), e111669. https://doi.org/10.1371/journal.pone.0111669

    Article  CAS  Google Scholar 

  • Chen, K., Horton, R. M., Bader, D. A., Lesk, C., Jiang, L., Jones, B., Zhou, L., Chen, X., Bi, J., & Kinney, P. L. (2017). Impact of climate change on heat-related mortality in Jiangsu Province, China. Environmental Pollution, 224, 317–325. https://doi.org/10.1016/j.envpol.2017.02.011

    Article  CAS  Google Scholar 

  • Chhetri, R., Pandey, V. P., Talchabhadel, R., & Thapa, B. R. (2021). How do CMIP6 models project changes in precipitation extremes over seasons and locations across the mid hills of Nepal? Theoretical and Applied Climatology, 2021, 1–18. https://doi.org/10.1007/S00704-021-03698-7

    Article  Google Scholar 

  • Clark, J. S., Iverson, L., Woodall, C. W., Allen, C. D., Bell, D. M., Bragg, D. C., D’Amato, A. W., Davis, F. W., Hersh, M. H., Ibanez, I., Jackson, S. T., Matthews, S., Pederson, N., Peters, M., Schwartz, M. W., Waring, K. M., & Zimmermann, N. E. (2016). The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. In Global change biology (vol. 22, issue 7, pp. 2329–2352). Blackwell Publishing Ltd. https://doi.org/10.1111/gcb.13160

  • Dahal, P., Shrestha, N. S., Shrestha, M. L., Krakauer, N. Y., Panthi, J., Pradhanang, S. M., Jha, A., & Lakhankar, T. (2016). Drought risk assessment in central Nepal: Temporal and spatial analysis. Natural Hazards, 80(3), 1913–1932. https://doi.org/10.1007/s11069-015-2055-5

    Article  Google Scholar 

  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  • Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: A precipitation and evaporation perspective. In Current climate change reports (vol. 4, issue 3, pp. 301–312). Springer. https://doi.org/10.1007/s40641-018-0101-6

  • DHM (2017) Observed climate trend analysis in the districts and physiographic regions of Nepal (1971-2014). Department of Hydrology and Meteorology (DHM) Kathmandu.

  • Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the worldâ € s dry and wet regions. Nature Climate Change, 6(5), 508–513. https://doi.org/10.1038/nclimate2941

    Article  Google Scholar 

  • Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19), 10081–10094. https://doi.org/10.5194/acp-13-10081-2013

    Article  CAS  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Gobena, A. K., & Gan, T. Y. (2013). Assessment of trends and possible climate change impacts on summer moisture availability in western canada based on metrics of the palmer drought severity index. Journal of Climate, 26(13), 4583–4595. https://doi.org/10.1175/JCLI-D-12-00421.1

    Article  Google Scholar 

  • Hamal, K., Sharma, S., Khadka, N., Haile, G. G., Joshi, B. B., Xu, T., & Dawadi, B. (2020). Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorological Applications, 27(5), 1–18. https://doi.org/10.1002/met.1950

    Article  Google Scholar 

  • Haslinger, K., Koffler, D., Schöner, W., & Laaha, G. (2014). Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction. Water Resources Research, 50(3), 2468–2487. https://doi.org/10.1002/2013WR015051

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., & Hain, C. (2016). The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. Journal of Hydrometeorology, 17(6), 1745–1761. https://doi.org/10.1175/JHM-D-15-0121.1

  • Hu, Z., Wu, Z., Zhang, Y., Li, Q., Islam, A. R. M. T., & Pan, C. (2021). Risk assessment of drought disaster in summer maize cultivated areas of the Huang-Huai-Hai plain, eastern China. Environmental Monitoring and Assessment, 193(7), 1–15. https://doi.org/10.1007/s10661-021-09224-6

    Article  CAS  Google Scholar 

  • Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., … Wang, G. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719–778. https://doi.org/10.1002/2016RG000550

  • Hulme, M., Marsh, R., & Jones, P. D. (1992). Global changes in a humidity index between 1931–60 and 1961–90. Climate Research, 2(1), 1–22. https://doi.org/10.3354/cr002001

    Article  Google Scholar 

  • Ichiyanagi, K., Yamanaka, M. D., Muraji, Y., & Vaidya, B. K. (2007). Precipitation in Nepal between 1987 and 1996. International Journal of Climatology, 27(13), 1753–1762. https://doi.org/10.1002/JOC.1492

    Article  Google Scholar 

  • IPCC (2021) Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896

  • Kafle, H. K. (2015). Spatial and temporal variation of drought in far and mid western regions of Nepal: Time series analysis (1982–2012). Nepal Journal of Science and Technology, 15(2), 65–76. https://doi.org/10.3126/njst.v15i2.12118

    Article  Google Scholar 

  • Kansakar, S. R., Hannah, D. M., Gerrard, J., & Rees, G. (2004). Spatial pattern in the precipitation regime of Nepal. International Journal of Climatology, 24(13), 1645–1659. https://doi.org/10.1002/JOC.1098

    Article  Google Scholar 

  • Karki, R., Talchabhadel, R., Aalto, J., & Baidya, S. K. (2016). New climatic classification of Nepal. Theoretical and applied climatology, 125(3), 799–808.

  • Khatiwada, K. R., & Pandey, V. P. (2019). Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather and Climate Extremes, 26https://doi.org/10.1016/j.wace.2019.100239

  • Kiani, R. S., Ali, S., Ashfaq, M., Khan, F., Muhammad, S., Reboita, M. S., & Farooqi, A. (2021). Hydrological projections over the Upper Indus Basin at 1.5 °C and 2.0 °C temperature increase. Science of the Total Environment, 788. https://doi.org/10.1016/j.scitotenv.2021.147759

  • Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003

    Article  Google Scholar 

  • Li, J., Yu, R., & Zhou, T. (2008). Teleconnection between NAO and climate downstream of the Tibetan Plateau. Journal of Climate, 21(18), 4680–4690. https://doi.org/10.1175/2008JCLI2053.1

    Article  Google Scholar 

  • Li, S. Y., Miao, L. J., Jiang, Z. H., Wang, G. J., Gnyawali, K. R., Zhang, J., Zhang, H., Fang, K., He, Y., & Li, C. (2020). Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, 11(3), 210–217. https://doi.org/10.1016/j.accre.2020.09.003

    Article  Google Scholar 

  • Mather, J. R., & Feddema, J. (1986). Hydrologic consequences of increases in trace gases and CO in the atmosphere. Effects of Changes in Stratospheric Ozone and Global Climate, 3, 251–271.

    Google Scholar 

  • McCune, B., & Keon, D. (2002). Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13(4), 603–606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x

    Article  Google Scholar 

  • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  Google Scholar 

  • Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology.

  • Miao, L., Li, S., Zhang, F., Chen, T., Shan, Y., & Zhang, Y. (2020). Future drought in the dry lands of Asia under the 1.5 and 2.0 °C warming scenarios. Earth’s Future, 8(6), e2019EF001337. https://doi.org/10.1029/2019EF001337

  • Mirabbasi, R., Anagnostou, E. N., Fakheri-Fard, A., Dinpashoh, Y., & Eslamian, S. (2013). Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. Journal of Hydrology, 492, 35–48. https://doi.org/10.1016/j.jhydrol.2013.04.019

    Article  Google Scholar 

  • Mishra, Y., Nakamura, T., Babel, M. S., Ninsawat, S., & Ochi, S. (2018). Impact of climate change on water resources of the Bheri River Basin, Nepal. Water (switzerland), 10(2), 1–21. https://doi.org/10.3390/w10020220

    Article  CAS  Google Scholar 

  • Monteith, J. L. (1965). Evaporation and environment. In Symposia of the society for experimental biology (Vol. 19, pp. 205-234). Cambridge University Press (CUP) Cambridge.

  • Moon, S., & Ha, K. J. (2017). Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change. Asia-Pacific Journal of Atmospheric Sciences, 53(2), 229–242. https://doi.org/10.1007/s13143-017-0024-5

    Article  Google Scholar 

  • Moon, S., & Ha, K. J. (2020). Future changes in monsoon duration and precipitation using CMIP6. Npj Climate and Atmospheric Science, 3(1), 1–7. https://doi.org/10.1038/s41612-020-00151-w

    Article  Google Scholar 

  • NPHC 2011. (2012). National Population and Housing Census 2011 (Village Development Committee/Municipality); Government of Nepal, National Planning Commission Secretatriat Central Bureau of Statistics Kathmandu, Nepal (vol. 02).

  • O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socio-economic pathways. Climatic Change, 122(3), 387–400. https://doi.org/10.1007/s10584-013-0905-2

    Article  Google Scholar 

  • Obasi, G. O. P. (1994). WMO’s role in the international decade for natural disaster reduction. In Bulletin of the American Meteorological Society (vol. 75, issue 9). https://doi.org/10.1175/1520-0477(1994)075<1655:writid>2.0.co;2

  • Palmer, W. C. (1965). Meteorological drought. In U.S. Weather Bureau, Res. Pap. No. 45 (p. 58).

  • Penman, H. L. (1948). Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145. https://doi.org/10.1098/rspa.1948.0037

  • Pokharel, B., Wang, S.-Y.S., Meyer, J., Marahatta, S., Nepal, B., Chikamoto, Y., & Gillies, R. (2020). The east–west division of changing precipitation in Nepal. International Journal of Climatology, 40(7), 3348–3359. https://doi.org/10.1002/JOC.6401

    Article  Google Scholar 

  • Popova, E. E., Yool, A., Aksenov, Y., Coward, A. C., & Anderson, T. R. (2014). Regional variability of acidification in the Arctic: A sea of contrasts. Biogeosciences, 11(2), 293–308. https://doi.org/10.5194/bg-11-293-2014

    Article  CAS  Google Scholar 

  • Rezaei, R., Gholifar, E., & Safa, L. (2016). Identifying and explaining the effects of drought in rural areas in Iran from viewpoints of farmers (Case Study: Esfejin village, Zanjan county). In Desert (vol. 21, issue 1). Desert (Biaban). https://doi.org/10.22059/jdesert.2016.58318

  • Saha, T. R., Shrestha, P. K., Rakovec, O., Thober, S., & Samaniego, L. (2021). A drought monitoring tool for South Asia. Environmental Research Letters, 16(5), 054014. https://doi.org/10.1088/1748-9326/abf525

    Article  Google Scholar 

  • Saifullah, M., Liu, S., Adnan, M., Zaman, M., Muhammad, S., Babur, M., Zhu, Y., & Wu, K. (2021). Assessment of spatial and temporal pattern of hydrological droughts in the upper indus basin, Pakistan. Polish Journal of Environmental Studies, 30(5), 4633–4645. https://doi.org/10.15244/pjoes/132623

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian ocean. Nature, 401(6751), 360–363. https://doi.org/10.1038/43854

    Article  CAS  Google Scholar 

  • Shen, X., Mei, Y., & Anagnostou, E. N. (2017). A comprehensive database of flood events in the contiguous United States from 2002 to 2013. Bulletin of the American Meteorological Society, 98(7), 1493–1502. https://doi.org/10.1175/BAMS-D-16-0125.1

    Article  Google Scholar 

  • Shrestha, S., Shrestha, M., & Babel, M. S. (2016). Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences, 75(4), 1–13. https://doi.org/10.1007/s12665-015-5150-8

    Article  Google Scholar 

  • Sigdel, M., & Ikeda, M. (2010). Spatial and temporal analysis of drought in Nepal using standardized precipitation index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1), 59–74. https://doi.org/10.3126/jhm.v7i1.5617

    Article  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., & Miller, H. (2007). Climate change 2007: IPCC fourth assessment report (AR4) (p. 996). In Cambridge Press.

    Google Scholar 

  • Sternberg, T. (2018). Moderating climate hazard risk through cooperation in Asian drylands. Land, 7(1), 22. https://doi.org/10.3390/land7010022

    Article  Google Scholar 

  • Talchabhadel, R., & Karki, R. (2019). Assessing climate boundary shifting under climate change scenarios across Nepal. Environmental Monitoring and Assessment, 191(8). https://doi.org/10.1007/s10661-019-7644-4

  • Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., & Parajuli, B. (2018). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38(11), 4296–4313. https://doi.org/10.1002/JOC.5669

    Article  Google Scholar 

  • Talchabhadel, R., Karki, R., Yadav, M., Maharjan, M., Aryal, A., & Thapa, B. R. (2019). Spatial distribution of soil moisture index across Nepal: A step towards sharing climatic information for agricultural sector. Theoretical and Applied Climatology, 137(3–4), 3089–3102. https://doi.org/10.1007/s00704-019-02801-3

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Thornthwaite, C.W. and Mather, J.R. (1955) The Water Balance. Publications in Climatology, 8, 5-86.

  • Tiwari, A., Fan, Z. X., Jump, A. S., & Zhou, Z. K. (2017). Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans-Himalaya, central Nepal. Plant Ecology. https://doi.org/10.1007/s11258-017-0716-z

    Article  Google Scholar 

  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., & Pitman, A. J. (2020). Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical Research Letters, 47(11), e2020GL087820. https://doi.org/10.1029/2020GL087820

  • Van Der Schrier, G., Van Ulden, A., & Van Oldenborgh, G. J. (2011). The construction of a Central Netherlands temperature. Climate of the Past, 7(2), 527–542. https://doi.org/10.5194/cp-7-527-2011

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Wang, S. Y., Yoon, J. H., Gillies, R. R., & Cho, C. (2013). What caused the winter drought in western nepal during recent years? Journal of Climate, 26(21), 8241–8256. https://doi.org/10.1175/JCLI-D-12-00800.1

    Article  Google Scholar 

  • Webb, E. L., & Sah, R. N. (2003). Structure and diversity of natural and managed sal (Shorea robusta Gaertn.f.) forest in the Terai of Nepal. Forest Ecology and Management, 176(1–3), 337–353. https://doi.org/10.1016/S0378-1127(02)00272-4

  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/SCIENCE.1239402/ASSET/4AC264E0-F5AA-4BF3-B0FB-31CCA3C3B0C7/ASSETS/GRAPHIC/341_508_F2.JPEG

    Article  CAS  Google Scholar 

  • Wilhite, D. A., & Glantz, M. H. (2019). Understanding the drought phenomenon: The role of definitions. In Planning for drought: Toward a reduction of societal vulnerability. https://doi.org/10.4324/9780429301735-2

  • Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N., & Shahid, S. (2021). Forecasting standardized precipitation index using data intelligence models: Regional investigation of Bangladesh. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82977-9

  • Zhang, L. X., Chen, X. L., & X. X. G. (2019). Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP). Climate Change Research, 15(5), 519–525.

    Google Scholar 

Download references

Acknowledgements

Also, the authors are grateful for the valuable platform of the Society for Conservation Biology Nepal (SCB Nepal).

Funding

This work was supported by the National Key Research and Development Program of China (No. 2020YFC1807103), the 973 Program (No. 2013CB733402), and the Special Fund for the Environmental Protection Research in the Public Interest of China (201409030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Tiwari, A., Song, X. et al. Drought index predictability for historical and future periods across the Southern plain of Nepal Himalaya. Environ Monit Assess 194, 642 (2022). https://doi.org/10.1007/s10661-022-10275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10275-6

Keywords

Navigation