Skip to main content

Advertisement

Log in

Home and community composts in Nantes city (France): quality and safety regarding trace metals and metalloids

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Home and community composting are key strategies for local organic waste management. The quality and safety of industrial composts are controlled, but those of home and community composts are not, and this could make them unsafe for use in kitchen gardens. Home (n = 20) and community (n = 41) composts, from urban and suburban areas including mildly Pb-contaminated allotment gardens, were analyzed for quality and safety regarding trace metals and metalloids (TMM) using mid-infrared Fourier transform spectrometry (FT-MIR) and portable X-ray fluorescence spectrometry, respectively. Home composts had a significantly higher Pb content (98 mg.kg−1 ± 10 mg.kg−1) than community composts (21 mg.kg−1 ± 2 mg.kg−1). Numerous home composts (85%) and a few community composts (17%) exceeded the organic farming thresholds for Pb (45 mg.kg−1) and Zn (100 mg.kg−1). The high mineral matter content and the relative abundance of chemical functions attributable to silicates (up to 35%) highly paralleled with TMM contents, mostly concentrated in the fine fraction. Co-inertia analysis highlighted strong and significant links between TMM contents and the whole chemical signature delivered by FT-MIR spectrometry. Pb-contaminated soil could be carried into home compost by green waste or by voluntary addition. Covariance analyses indicated that mineral matter and chemical functions only partly explained the variability in Pb content, suggesting a more complex combination of drivers. Community composting appears as a suitable local solution resulting in high-quality compost that complies with European organic farming regulations, while home composting from allotment gardens should be seriously evaluated to comply with such safety requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the authors.

References

  • ADEME. (2018). Le compostage et le paillage.

  • Adhikari, B., Trémier, A., Barrington, S., Martinez, J., & Daumoin, M. (2013). Gas emissions as influenced by home composting system configuration. Journal of Environmental Management, 116, 163–171. https://doi.org/10.1016/j.jenvman.2012.12.008

    Article  CAS  Google Scholar 

  • Adhikari, B., Trémier, A., Martinez, J., & Barrington, S. (2010). Home and community composting for on-site treatment of urban organic waste: Perspective for Europe and Canada. Waste Management and Research, 28(11), 1039–1053. https://doi.org/10.1177/0734242X10373801

    Article  CAS  Google Scholar 

  • AFNOR. (1984, Décembre). Sols, sédiments, matières fertilisantes, supports de culture - Préparation de l'échantillon pour la détermination d'éléments métalliques traces. X31-150, 5p.

  • AFNOR. (1996, Juillet). Qualité des sols - Sols, sédiments - Mise en solution totale par attaque acide. NF X31-147, 12p.

  • AFNOR. (2006, Avril). Amendements organiques - Dénominations, spécifications et marquage. NF U44-051, 15p.

  • AFNOR. (2012, Octobre). Boues, bio-déchets traités et sols - Lignes directrices pour le prétraitement des échantillons. NF EN 16179, 43p.

  • AFNOR. (2016, Novembre). Boues, bio-déchets traités et sols - Détermination des éléments en traces par spectrométrie de masse avec plasma induit par haute fréquence (ICP-MS). NF EN 16171, 24p.

  • AFNOR. (2021, Août). Sols, déchets, biodéchets traités et boues - Détermination de la perte au feu. NF EN 15935, 13p.

  • Amlinger, F., Pollak, M., & Favoino, E. (2004). Heavy metals and organic compounds from wastes used as organic fertilisers.

  • Andersen, J. K., Boldrin, A., Christensen, T. H., & Scheutz, C. (2010). Greenhouse gas emissions from home composting of organic household waste. Waste Management, 30(12), 2475–2482. https://doi.org/10.1016/j.wasman.2010.07.004

    Article  CAS  Google Scholar 

  • Andersen, J. K., Boldrin, A., Christensen, T. H., & Scheutz, C. (2012). Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling. Waste Management, 32(1), 31–40. https://doi.org/10.1016/j.wasman.2011.09.014

    Article  CAS  Google Scholar 

  • Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: A literature review. Organic Agriculture, 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-z

    Article  Google Scholar 

  • Barrena, R., Font, X., Gabarrell, X., & Sánchez, A. (2014). Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability. Waste Management, 34(7), 1109–1116. https://doi.org/10.1016/j.wasman.2014.02.008

    Article  Google Scholar 

  • Bechet, B., Joimel, S., Jean-Soro, L., Hursthouse, A., Agboola, A., Leitão, T. E., Costa, H., do Rosário Cameira, M., Le Guern, C., Schwartz, C., & Lebeau, T. (2018). Spatial variability of trace elements in allotment gardens of four European cities: Assessments at city, garden, and plot scale. Journal of Soils and Sediments, 18(2), 391–406. https://doi.org/10.1007/s11368-016-1515-1

    Article  CAS  Google Scholar 

  • Beesley, L., & Dickinson, N. (2010). Carbon and trace element mobility in an urban soil amended with green waste compost. Journal of Soils and Sediments, 10(2), 215–222. https://doi.org/10.1007/s11368-009-0112-y

    Article  CAS  Google Scholar 

  • Boldrin, A., & Christensen, T. H. (2010). Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Management, 30(4), 551–557. https://doi.org/10.1016/j.wasman.2009.11.031

    Article  CAS  Google Scholar 

  • Bruni, C., Akyol, Ç., Cipolletta, G., Eusebi, A. L., Caniani, D., Masi, S., Colón, J., & Fatone, F. (2020). Decentralized community composting: Past, present and future aspects of Italy. Sustainability, 12(8), 3319. https://doi.org/10.3390/su12083319

    Article  Google Scholar 

  • Cascant, M. M., Sisouane, M., Tahiri, S., Krati, M. E., Cervera, M. L., Garrigues, S., & De La Guardia, M. (2016). Determination of total phenolic compounds in compost by infrared spectroscopy. Talanta, 153, 360–365. https://doi.org/10.1016/j.talanta.2016.03.020

    Article  CAS  Google Scholar 

  • CE. (2006). Décision de la Commission du 3 novembre 2006 établissant des critères écologiques révisés et les exigences d’évaluation et de vérification correspondantes pour l’attribution du label écologique communautaire aux amendements pour sols (2006/799/CE). Journal Officiel de l’Union Européenne, 28–34.

  • CEE. (1991). Règlement (CE) No 2092/91 du Conseil du 24 juin 1991 concernant le mode de production biologique de produits agricoles et sa préparation sur les produits agricoles et les denrées alimentaires. Journal Officiel de l’Union Européenne, 198, 1–105.

  • Collas, C., Mahieu, M., Badot, P.-M., Crini, N., Rychen, G., Feidt, C., & Jurjanz, S. (2020). Dynamics of soil ingestion by growing bulls during grazing on a high sward height in the French West Indies. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-74317-0

    Article  CAS  Google Scholar 

  • Cook, L. L., McGonigle, T. P., & Inouye, R. S. (2009). Titanium as an indicator of residual soil on arid-land plants. Journal of Environment Quality, 38, 188–199. https://doi.org/10.2134/jeq2007.0034

    Article  CAS  Google Scholar 

  • Dray, S., Chessel, D., & Thioulouse, J. (2003). Co-inertia analysis and the linking of ecological data tables. Ecology, 84(11), 3078–3089. https://doi.org/10.1890/03-0178

    Article  Google Scholar 

  • Dupuy, N., & Douay, F. (2001). Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(5), 1037–1047. https://doi.org/10.1016/S1386-1425(00)00420-0

    Article  Google Scholar 

  • Fan, T. T., Wang, Y. J., Li, C. B., He, J. Z., Gao, J., Zhou, D. M., Friedman, S. P., & Sparks, D. L. (2016). Effect of organic matter on sorption of Zn on soil: Elucidation by Wien effect measurements and EXAFS spectroscopy. Environmental Science and Technology, 50(6), 2931–2937. https://doi.org/10.1021/acs.est.5b05281

    Article  CAS  Google Scholar 

  • Fang, W., Wei, Y., & Liu, J. (2016). Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. Journal of Hazardous Materials, 310, 1–10. https://doi.org/10.1016/j.jhazmat.2016.02.025

    Article  CAS  Google Scholar 

  • Grube, M., Lin, J. G., Lee, P. H., & Kokorevicha, S. (2006). Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma, 130(3–4), 324–333. https://doi.org/10.1016/J.GEODERMA.2005.02.005

    Article  CAS  Google Scholar 

  • Guénon, R., Vennetier, M., Dupuy, N., Roussos, S., Pailler, A., & Gros, R. (2013). Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degradation and Development, 24(2), 115–128. https://doi.org/10.1002/ldr.1109

    Article  Google Scholar 

  • Haberhauer, G., & Gerzabek, M. H. (1999). Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vibrational Spectroscopy, 19(2), 413–417. https://doi.org/10.1016/S0924-2031(98)00046-0

    Article  CAS  Google Scholar 

  • Hagemann, N., Subdiaga, E., Orsetti, S., de la Rosa, J. M., Knicker, H., Schmidt, H. P., Kappler, A., & Behrens, S. (2018). Effect of biochar amendment on compost organic matter composition following aerobic compositing of manure. Science of the Total Environment, 613–614, 20–29. https://doi.org/10.1016/j.scitotenv.2017.08.161

    Article  CAS  Google Scholar 

  • Hanc, A., Novak, P., Dvorak, M., Habart, J., & Svehla, P. (2011). Composition and parameters of household bio-waste in four seasons. Waste Management, 31(7), 1450–1460. https://doi.org/10.1016/j.wasman.2011.02.016

    Article  Google Scholar 

  • Hsu, J. -H., & Lo, S. -L. (1999). Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, 104(2), 189–196. https://doi.org/10.1016/S0269-7491(98)00193-6

    Article  CAS  Google Scholar 

  • Huerta-Pujol, O., Gallart, M., Soliva, M., Martínez-Farré, F. X., & López, M. (2011). Effect of collection system on mineral content of biowaste. Resources, Conservation and Recycling, 55(11), 1095–1099. https://doi.org/10.1016/j.resconrec.2011.06.008

    Article  Google Scholar 

  • INSEE. (2022a). Populations légales 2019. Recensement de la population. Régions, départements, arrondissements, cantons et communes. 1–978.

  • INSEE. (2022b). Exploitations principales en géographie 2019.

  • Jean-Soro, L., Le Guern, C., Bechet, B., Lebeau, T., & Ringeard, M. F. (2015). Origin of trace elements in an urban garden in Nantes, France. Journal of Soils and Sediments, 15(8), 1802–1812. https://doi.org/10.1007/s11368-014-0952-y

    Article  CAS  Google Scholar 

  • Kupper, T., Bürge, D., Bachmann, H. J., Güsewell, S., & Mayer, J. (2014). Heavy metals in source-separated compost and digestates. Waste Management, 34(5), 867–874. https://doi.org/10.1016/j.wasman.2014.02.007

    Article  CAS  Google Scholar 

  • Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18.

  • Le Guern, C., Baudouin, V., Sauvaget, B., Pineau-Jamin, E., Gaubert, C., Braud, R., Desse-Engrand, F., Polett, S., Ménoury, A., Bodéré, G., Milano, E., Conil, P., & Bâlon, P. (2017). Développement d’une méthodologie de gestion des terres excavées issues de l’aménagement de quartiers nantais - Phase 1 : Caractérisation des sols et recensement des sources de pollution potentielles. Rapport final BRGM/RP-67138-FR.

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10. https://doi.org/10.1016/S0924-2031(02)00065-6

    Article  Google Scholar 

  • Martínez-Blanco, J., Colón, J., Gabarrell, X., Font, X., Sánchez, A., Artola, A., & Rieradevall, J. (2010). The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Management, 30(6), 983–994. https://doi.org/10.1016/J.WASMAN.2010.02.023

    Article  Google Scholar 

  • McWhirt, A., Weindorf, D. C., & Zhu, Y. (2012). Rapid analysis of elemental concentrations in compost via portable X-ray fluorescence spectrometry. Compost Science & Utilization, 20(3), 185–193. https://doi.org/10.1080/1065657X.2012.10737045

    Article  CAS  Google Scholar 

  • Medyńska-Juraszek, A., Bednik, M., & Chohura, P. (2020). Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. International Journal of Environmental Research and Public Health, 17(21), 7861. https://doi.org/10.3390/IJERPH17217861

    Article  Google Scholar 

  • Michaud, A. M., Cambier, P., Sappin-Didier, V., Deltreil, V., Mercier, V., Rampon, J. N., & Houot, S. (2020). Mass balance and long-term soil accumulation of trace elements in arable crop systems amended with urban composts or cattle manure during 17 years. Environmental Science and Pollution Research, 27(5), 5367–5386. https://doi.org/10.1007/s11356-019-07166-8

    Article  CAS  Google Scholar 

  • Mihai, F. -C., & Ingrao, C. (2018). Assessment of biowaste losses through unsound waste management practices in rural areas and the role of home composting. Journal of Cleaner Production, 172, 1631–1638. https://doi.org/10.1016/j.jclepro.2016.10.163

    Article  Google Scholar 

  • Murray, H., Pinchin, T. A., & Macfie, S. M. (2011). Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. Journal of Soils and Sediments, 11(5), 815–829. https://doi.org/10.1007/s11368-011-0359-y

    Article  CAS  Google Scholar 

  • Niederer, M., Maschka-Selig, A., & Hohl, C. (1995). Monitoring polycyclic aromatic hydrocarbons (PAHs) and heavy metals in urban soil, compost and vegetation. Environmental Science and Pollution Research., 2(2), 83–89. https://doi.org/10.1007/BF02986721

    Article  CAS  Google Scholar 

  • Oliveira, L. S. B. L., Oliveira, D. S. B. L., Bezerra, B. S., Silva Pereira, B., & Battistelle, R. A. G. (2016). Environmental analysis of organic waste treatment focusing on composting scenarios. Journal of Cleaner Production, 155, 229–237. https://doi.org/10.1016/J.JCLEPRO.2016.08.093

    Article  Google Scholar 

  • Ouatmane, A., Provenzano, M., Hadifi, M., & Senesi, N. (2000). Compost maturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Science & Utilization, 8(2), 124–134. https://doi.org/10.1080/1065657X.2000.10701758

    Article  Google Scholar 

  • Panaretou, V., Vakalis, S., Ntolka, A., Sotiropoulos, A., Moustakas, K., Malamis, D., & Loizidou, M. (2019). Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environmental Science and Pollution Research, 26(20), 20232–20247. https://doi.org/10.1007/s11356-019-05307-7

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Sahmer, K., Waterlot, C., & Douay, F. (2019). From environmental data acquisition to assessment of gardeners’ exposure: Feedback in an urban context highly contaminated with metals. Environmental Science and Pollution Research, 26(20), 20107–20120. https://doi.org/10.1007/s11356-018-3468-y

    Article  CAS  Google Scholar 

  • Riber, C., Petersen, C., & Christensen, T. H. (2009). Chemical composition of material fractions in Danish household waste. Waste Management, 29(4), 1251–1257. https://doi.org/10.1016/j.wasman.2008.09.013

    Article  CAS  Google Scholar 

  • Růžičková, J., Raclavská, H., Kucbel, M., Grobelak, A., Šafář, M., Raclavský, K., Švédová, B., Juchelková, D., & Moustakas, K. (2021). The potential environmental risks of the utilization of composts from household food waste. Environmental Science and Pollution Research, 28(19), 24663–24679. https://doi.org/10.1007/s11356-020-09916-5/Published

    Article  Google Scholar 

  • Saveyn, H., & Eder, P. (2014). End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical proposals. Report EUR 26425 EN. In Publications Office of the European Union. https://doi.org/10.2791/6295

  • Schwartz, C. (2013). Jardins potagers: terres inconnues. (EDP Sciences (ed.)).

  • Smidt, E., Eckhardt, K. U., Lechner, P., Schulten, H. R., & Leinweber, P. (2005). Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodegradation, 16(1), 67–79. https://doi.org/10.1007/s10531-004-0430-8

    Article  CAS  Google Scholar 

  • Smidt, E., Lechner, P., Schwanninger, M., Haberhauer, G., & Gerzabek, M. H. (2002). Characterization of waste organic matter by FT-IR spectroscopy: Application in waste science. Applied Spectroscopy, 56(9), 1170–1175. https://doi.org/10.1366/000370202760295412

    Article  CAS  Google Scholar 

  • Smith, S. R., & Jasim, S. (2009). Small-scale home composting of biodegradable household waste: Overview of key results from a 3-year research programme in West London. Waste Management and Research, 27(10), 941–950. https://doi.org/10.1177/0734242X09103828

    Article  CAS  Google Scholar 

  • Vandecasteele, B., Boogaerts, C., & Vandaele, E. (2016). Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management, 58, 169–180. https://doi.org/10.1016/j.wasman.2016.09.012

    Article  CAS  Google Scholar 

  • Vázquez, M. A., & Soto, M. (2017). The efficiency of home composting programmes and compost quality. Waste Management, 64, 39–50. https://doi.org/10.1016/j.wasman.2017.03.022

    Article  CAS  Google Scholar 

  • Vázquez, M. A., Plana, R., Pérez, C., & Soto, M. (2020). Development of technologies for local composting of food waste from universities. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17093153

    Article  Google Scholar 

  • Vázquez, M. A., Sen, R., & Soto, M. (2015). Physico-chemical and biological characteristics of compost from decentralised composting programmes. Bioresource Technology, 198, 520–532. https://doi.org/10.1016/j.biortech.2015.09.034

    Article  CAS  Google Scholar 

  • Veeken, A., & Hamelers, B. (2002). Sources of Cd, Cu, Pb and Zn in biowaste. Science of the Total Environment, 300(1–3), 87–98. https://doi.org/10.1016/S0048-9697(01)01103-2

    Article  CAS  Google Scholar 

  • Veeken, A., & Hamelers, B. (2003). Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation. Environmental Technology, 24(3), 329–337. https://doi.org/10.1080/09593330309385565

    Article  CAS  Google Scholar 

  • Weindorf, D. C., Sarkar, R., Dia, M., Wang, H., Chang, Q., Haggard, B., McWhirt, A., & Wooten, A. (2013). Correlation of X-ray fluorescence spectrometry and inductively coupled plasma atomic emission spectroscopy for elemental determination in composted products. Compost Science and Utilization, 16(2), 79–82. https://doi.org/10.1080/1065657X.2008.10702361

    Article  Google Scholar 

  • Wen, J., Li, Z., Huang, B., Luo, N., Huang, M., Yang, R., Zhang, Q., Zhai, X., & Zeng, G. (2018). The complexation of rhizosphere and nonrhizosphere soil organic matter with chromium: Using elemental analysis combined with FTIR spectroscopy. Ecotoxicology and Environmental Safety, 154, 52–58. https://doi.org/10.1016/J.ECOENV.2018.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the POTAGERS project (grant number 1972C0018), financed by the ADEME (French Environment and Energy Management Agency), which also financed the PhD grant of the lead author along with Gustave Eiffel University. We thank Agriopale Co. (Cucq, France) for providing compost samples as a partner of the POTAGERS project. We would also like to thank all the other contributors who allowed us to collect compost samples in the urban area of Nantes (France): the gardeners from the Jardins de la Fournillère and Compostri associations, Compost In Situ, La Tricyclerie, and the municipality of Bouguenais. Information about the composting sites was provided personally by the gardeners of the Jardins de la Fournillère, Mr. Samir Demortier (Compostri), Mr. Pascal Retière and Mr. Dana Pfeuty (Compost In Situ), Mr. Pierre Briand (La Tricyclerie), and Mr. Nicolas Biteau (municipality of Bouguenais), thanks to all of them. We also thank the laboratory MOLTECH-Anjou of the University of Angers and Dr. Olivier Alévêque (CNRS) for supplying measuring equipment and technical assistance.

Funding

This study is part of the POTAGERS project (grant number 1972C0018), funded by the ADEME (French Environment and Energy Management Agency). The first author received a PhD grant from the ADEME and Gustave Eiffel University.

Author information

Authors and Affiliations

Authors

Contributions

Funding acquisition: Laure Vidal-Beaudet, Liliane Jean-Soro; conceptualization: Alice Kohli, René Guénon, Liliane Jean-Soro, Laure Vidal-Beaudet; methodology: Alice Kohli, René Guénon, Liliane Jean-Soro, Laure Vidal-Beaudet; formal analysis and investigation: Alice Kohli; writing—original draft preparation: Alice Kohli; writing—review and editing: Alice Kohli, René Guénon, Liliane Jean-Soro, Laure Vidal-Beaudet. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alice Kohli.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, A., Guénon, R., Jean-Soro, L. et al. Home and community composts in Nantes city (France): quality and safety regarding trace metals and metalloids. Environ Monit Assess 194, 649 (2022). https://doi.org/10.1007/s10661-022-10251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10251-0

Keywords

Navigation