Skip to main content

Advertisement

Log in

Distribution and ecological risk of metals in an urban natural protected area in the Riviera Maya, Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 16 December 2022

This article has been updated

Abstract

Urbanization can negatively impact natural protected areas near or surrounded by cities, and such impacts include untreated wastewater discharge, leachates from dumpsters, e-waste, and road dust. In this research, we show that not only large cities with industry are prone to be polluted, but also young touristic cities with high population increase rate can suffer from urban contamination. We evaluated metal pollution in a natural protected area within a 50-year-old city without conventional industry that was likely contaminated by the urban sprawl around the protected area. We tested water, zooplankton, sediment and plant samples for metallic elements to evaluate their bioaccumulation in zooplankton, enrichment factors and geoaccumulation index values in sediments, and translocation factors in plants. Finally, we evaluated the ecological risk due to metal contamination. Metals at levels above our detection limit (20 µg/L) were not found in the water and zooplankton samples. The sediments and plants in the storm drain section of the protected area had a greater concentration of metals and wastewater indicators (coliforms) than those in the rest of the lagoon. Moreover, signs of Al, Cu, Ni, Zn, Cr, Pb, and Ti contamination were found in the plant tissues. We estimated that the ecological risk of this natural protected area surrounded by the city of Cancun (Mexico) ranged from mild to strong, with Zn being the metal of most concern. The results highlight that young touristic cities around the world will endure contamination from urban sources; signs or early warnings of contamination must be identified to prevent and resolve such issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in the CICY repository at https://cicy.repositorioinstitucional.mx/jspui/handle/1003/2050

Change history

References

  • Adokoh, C. K., Obodai, E. A., Essumang, D. K., Serfor-Armah, Y., Nyarko, B. J. B., & Asabere-Ameyaw, A. (2011). Statistical evaluation of environmental contamination, distribution and source assessment of heavy metals (aluminum, arsenic, cadmium, and mercury) in some lagoons and an estuary along the coastal belt of Ghana. Archives of Environmental Contamination and Toxicology, 61(3), 389–400. https://doi.org/10.1007/s00244-011-9643-5

    Article  CAS  Google Scholar 

  • Aknaf, A., Akodad, M., Layachi, M., Baghour, M., Oudra, B., & Vasconcelos, V. (2022). The chemical characterization and its relationship with heavy metals contamination in surface sediment of Marchica Mediterranean Lagoon (North of Morocco). Environmental Science and Pollution Research, 29(3), 4159–4169. https://doi.org/10.1007/s11356-021-15641-4

    Article  CAS  Google Scholar 

  • Akram, R., Fahad, S., Hashmi, M. Z., Wahid, A., Adnan, M., Mubeen, M., Khan, N., Rehmani, M. I. A., Awais, M., Abbas, M., Shazad, K., Ahmad, S., Hammad, H. M., & Nasim, W. (2019). Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environmental Science and Pollution Research, 26(17), 16923–16938. https://doi.org/10.1007/s11356-019-04998-2

    Article  CAS  Google Scholar 

  • Amphalop, N., Suwantarat, N., Prueksasit, T., Yachusri, C., & Srithongouthai, S. (2020). Ecological risk assessment of arsenic, cadmium, copper, and lead contamination in soil in e-waste separating household area, Buriram province. Thailand. Environmental Science and Pollution Research, 27(35), 44396–44411. https://doi.org/10.1007/s11356-020-10325-x

    Article  CAS  Google Scholar 

  • An, Y. J., & Breindenbach, G. P. (2005). Monitoring E. coli and total coliforms in natural spring water as related to recreational mountain areas. Environmental Monitoring and Assessment, 102(1–3), 131–137. https://doi.org/10.1007/s10661-005-4691-9

  • Andrade-Gómez, L., Rebolledo-Vieyra, M., Andrade, J. L., López, P. Z., & Estrada-Contreras, J. (2019). Karstic aquifer structure from geoelectrical modeling in the Ring of Sinkholes. Mexico. Hydrogeology Journal, 27(7), 2365–2376. https://doi.org/10.1007/s10040-019-02016-w

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard Methods for the Examination of Water and Wastewater. American Public Health Association.

    Google Scholar 

  • Araújo, D. F., Ponzevera, E., Briant, N., Knoery, J., Sireau, T., Mojtahid, M., & Brach-Papa, C. (2019). Assessment of the metal contamination evolution in the Loire estuary using Cu and Zn stable isotopes and geochemical data in sediments. Marine Pollution Bulletin, 143, 12–23. https://doi.org/10.1016/j.marpolbul.2019.04.034

    Article  CAS  Google Scholar 

  • Arcega-Cabrera, F., Garza-Pérez, R., Noreña-Barroso, E., & Oceguera-Vargas, I. (2015). Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico. Bulletin of Environmental Contamination and Toxicology, 94(1), 58–65. https://doi.org/10.1007/s00128-014-1416-1

    Article  CAS  Google Scholar 

  • Asztemborska, M., Jakubiak, M., Stęborowski, R., Chajduk, E., & Bystrzejewska-Piotrowska, G. (2018). Titanium dioxide nanoparticle circulation in an aquatic ecosystem. Water, Air, and Soil Pollution, 229, 208. https://doi.org/10.1007/s11270-018-3852-8

    Article  CAS  Google Scholar 

  • Barrio-Parra, F., Elío, J., De Miguel, E., García-González, J. E., Izquierdo, M., & Álvarez, R. (2018). Environmental risk assessment of cobalt and manganese from industrial sources in an estuarine system. Environmental Geochemistry and Health, 40(2), 737–748. https://doi.org/10.1007/s10653-017-0020-9

    Article  CAS  Google Scholar 

  • Beltrame, M. O., De Marco, S. G., & Marcovecchio, J. E. (2009). Dissolved and particulate heavy metals distribution in coastal lagoons. A case study from Mar Chiquita Lagoon, Argentina. Estuarine, Coastal and Shelf Science, 85(1), 45–56. https://doi.org/10.1016/j.ecss.2009.04.027

  • Bolan, N., Hoang, S. A., Tanveer, M., Wang, L., Bolan, S., Sooriyakumar, P., Robinson, B., Wijesekara, H., Wijesooriya, M., Keerthanan, S., Vithanage, M., Markert, B., Fränzle, S., Wünschmann, S., Sarkar, B., Vinu, A., Kirkham, M. B., Siddique, K. H. M., & Rinklebe, J. (2021). From mine to mind and mobiles–Lithium contamination and its risk management. Environmental Pollution, 290, 118067. https://doi.org/10.1016/j.envpol.2021.118067

    Article  CAS  Google Scholar 

  • Caballero-Vázquez, J. A., Gamboa-Pérez, H. C., & Schmitter-Soto, J. J. (2005). Composition and spatio-temporal variation of the fish community in the Chacmochuch Lagoon system, Quintana Roo. Mexico. Hidrobiológica, 15(2), 215–225.

    Google Scholar 

  • Canadian Environment Quality Guidelines. (2001). Canadian Sediment Quality guidelines for the Protection of Aquatic Life (Summary Tables). Canadian Council of Ministers of the Environment (updated). Available at https://ccme.ca/en/summary-table. Date 25 March 2022.

  • Carrión, C., Ponde-de, C., Cram, S., Sommer, I., Hernandez, M., & Vanegas, C. (2012). Aprovechamiento potencial del lirio acuático (Eichhornia crassipes) en Xochimilco para fitorremediación de metales. Agrociencia, 46, 609–620. http://www.scielo.org.mx/pdf/agro/v46n6/v46n6a7.pdf

  • Cempel, M., & Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Chapman, H. D. (1965). Cation-exchange capacity. In: C.A. Black (ed.). Methods of soil analysis - Chemical and microbiological properties Ch 57. Agronomy Monographs 9, 891–901. https://doi.org/10.2134/agronmonogr9.2.c6

  • Chen, H., Chen, Z., Chen, Z., Ou, X., & Chen, J. (2020). Calculation of toxicity coefficient of potential ecological risk assessment of rare earth elements. Bulletin of Environmental Contamination and Toxicology, 104(5), 582–587. https://doi.org/10.1007/s00128-020-02840-x

    Article  CAS  Google Scholar 

  • Culotta, L., De Stefano, C., Gianguzza, A., Mannino, M. R., & Orecchio, S. (2006). The PAH composition of surface sediments from Stagnone coastal lagoon, Marsala (Italy). Marine Chemistry, 99(1–4), 117–127. https://doi.org/10.1016/j.marchem.2005.05.010

    Article  CAS  Google Scholar 

  • Cumming, G. S., & Allen, C. R. (2017). Protected areas as social-ecological systems: Perspectives from resilience and social-ecological systems theory. Ecological Applications, 27(6), 1709–1717. https://doi.org/10.1002/eap.1584

    Article  Google Scholar 

  • Danish, M., & Tripathy, G. R. (2022). Sources and internal cycling of dissolved barium in a tropical coastal lagoon (Chilika lagoon, India) system. Marine Chemistry, 104083.https://doi.org/10.1016/j.marchem.2021.104083

  • De Buyck, P. J., Van Hulle, S. W., Dumoulin, A., & Rousseau, D. P. (2021). Roof runoff contamination: A review on pollutant nature, material leaching and deposition. Reviews in Environmental Science and Bio/technology, 20(2), 549–606. https://doi.org/10.1007/s11157-021-09567-z

    Article  CAS  Google Scholar 

  • Eid, E. M., Galal, T. M., Sewelam, N. A., Talha, N. I., & Abdallah, S. M. (2020). Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environmental Science and Pollution Research, 27(11), 12138–12151. https://doi.org/10.1007/s11356-020-07839-9

    Article  CAS  Google Scholar 

  • Fekiacova, Z., Cornu, S., & Pichat, S. (2015). Tracing contamination sources in soils with Cu and Zn isotopic ratios. Science of the Total Environment, 517, 96–105. https://doi.org/10.1016/j.scitotenv.2015.02.046

    Article  CAS  Google Scholar 

  • Fragoso-Servón, P., Pereira Corona, A., Bautista Zúñiga, F., & Zapata Buenfil, G. D. J. (2017). Digital soil map of Quintana Roo. Mexico. Journal of Maps, 13(2), 449–456. https://doi.org/10.1080/17445647.2017.1328317

    Article  Google Scholar 

  • Fujita, M., Ide, Y., Sato, D., Kench, P. S., Kuwahara, Y., Yokoki, H., & Kayanne, H. (2014). Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu. Chemosphere, 95, 628–634. https://doi.org/10.1016/j.chemosphere.2013.10.0230

    Article  CAS  Google Scholar 

  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679. https://doi.org/10.3390/ijerph17030679

    Article  CAS  Google Scholar 

  • Hakanson, L. L. (1980). An ecological risk index aquatic pollution control, a sedimentological approach. Water Research, 14(8), 975–100. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Herrera-Silveira, J., & Morales-Ojeda, S. M. (2010). Subtropical karstic coastal lagoon assessment, Southeast Mexico: The Yucatan Peninsula case. In M. J. Kennish & H. W. Paerl (Eds.), Coastal lagoons: Critical habitats of environmental change (pp. 307–333). CRC Press. Florida.

    Chapter  Google Scholar 

  • Hiernaux Nicholas, D. (1999). Cancun Bliss. In D. Judd & S. Fainstein (Eds.), The Tourist city (pp. 125–139). Yale University Press. USA.

    Google Scholar 

  • INEGI. (2016). Anuario estadístico y geográfico de Quintana Roo 2016. Instituto Nacional de Estadística y Geográfica, Mexico.

  • INEGI. (2021). Censo de población y vivienda 2020. Tabulados del Cuestionario Básico. Instituto Nacional de Estadística y Geográfica, Mexico.

  • Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental Geochemistry and Health, 36(4), 797–814. https://doi.org/10.1007/s10653-014-9622-7

    Article  CAS  Google Scholar 

  • Ladislas, S., El-Mufleh, A., Gérente, C., Chazarenc, F., Andrès, Y., & Béchet, B. (2011). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution, 223(2), 877–888. https://doi.org/10.1007/s11270-011-0909-3

    Article  CAS  Google Scholar 

  • Laurent, C., Bravin, M. N., Crouzet, O., Pelosi, C., Tillard, E., Lecomte, P., & Lamy, I. (2020). Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of the Total Environment, 709, 135927. https://doi.org/10.1016/j.scitotenv.2019.135927

    Article  CAS  Google Scholar 

  • Lindström, M. (2001). Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes. Water, Air, and Soil Pollution, 126(3), 363–383.

    Article  Google Scholar 

  • López-Martínez, S., Gallegos-Martínez, M. E., Pérez, L. J., & Gutiérrez, M. (2005). Mecanismos de fitorremediación de suelos contaminados con moléculas orgánicas xenobióticas. Revista Internacional De Contaminación Ambiental, 21(2), 91–100.

    Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnology and Oceanography, 12(2), 343–346.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Pelczar, J. (2005). Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils. Communications in Soil Science and Plant Analysis, 36(9–10), 1117–1128. https://doi.org/10.1081/CSS-200056880

    Article  CAS  Google Scholar 

  • Mcdonald, R. I., Forman, R. T., Kareiva, P., Neugarten, R., Salzer, D., & Fisher, J. (2009). Urban effects, distance, and protected areas in an urbanizing world. Landscape and Urban Planning, 93(1), 63–75. https://doi.org/10.1016/j.landurbplan.2009.06.002

    Article  Google Scholar 

  • McDonald, A. T., Chapman, P. J., & Fukasawa, K. (2008). The microbial status of natural waters in a protected wilderness area. Journal of Environmental Management, 87(4), 600–608. https://doi.org/10.1016/j.jenvman.2007.10.007

    Article  CAS  Google Scholar 

  • Ministry of the Environment, Finland. (2007). Government Decree on the Assessment of Soil Contamination and Remediation Needs 214/2007 (Unofficial translation). Retrieved March 25th, 2022, from http://extwprlegs1.fao.org/docs/pdf/fin113198.pdf

  • NMX-AA-042-SCFI-2015. (2015). Análisis de agua. Enumeración de organismos coliformes totales, organismos coliformes fecales (termotolerantes) y Escherichia coli. Método del número más probable en tubos múltiples. Secretaría de Economía, México

  • NOM-003-ECOL-1997. (1997). Que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsen en servicios al público. Retrieved April 13th, 2022, from https://www.gob.mx/cms/uploads/attachment/file/311363/NOM_003_SEMARNAT.pdf

  • NOM-147-SEMARNAT/SSA1–2004. (2004). Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Retrieved March 125th, 2022, from https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-147-semarnat-ssa1-2004

  • Null, K. A., Knee, K. L., Crook, E. D., de Sieyes, N. R., Rebolledo-Vieyra, M., Hernández-Terrones, L., & Paytan, A. (2014). Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Continental Shelf Research, 77, 38–50. https://doi.org/10.1016/j.csr.2014.01.011

    Article  Google Scholar 

  • Otero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Meléndez, W., & Macías, F. (2017). High heterogeneity in soil composition and quality in different mangrove forests of Venezuela. Environmental Monitorigin and Assessment, 189, 511. https://doi.org/10.1007/s10661-017-6228-4

    Article  CAS  Google Scholar 

  • Pachura, P., Ociepa-Kubicka, A., & Skowron-Grabowska, B. (2016). Assessment of the availability of heavy metals to plants based on the translocation index and the bioaccumulation factor. Desalination and Water Treatment, 57(3), 1469–1477. https://doi.org/10.1080/19443994.2015.1017330

    Article  CAS  Google Scholar 

  • Padilla, N. S. (2015). The environmental effects of tourism in Cancun, Mexico. International Journal of Environmental Sciences., 6(1), 1–13.

    Google Scholar 

  • Pereira, T. L., Wallner-Kersanach, M., Costa, L. D. F., Costa, D. P., & Baisch, P. R. M. (2018). Nickel, vanadium, and lead as indicators of sediment contamination of marina, refinery, and shipyard areas. Environmental Science and Pollution Research, 25(2), 1719–1730.

    Article  CAS  Google Scholar 

  • Rashid, M. (1969). Contribution of humic substances to the cation exchange capacity of different marine sediments. Atlantic Geology, 5(2), 44–50. Retrieved March 25th, 2022, from https://id.erudit.org/iderudit/ageo05_2rep02

  • Santos-Medrano, G. E., & Rico-Martínez, R. (2013). Lethal effects of five metals on the freshwater rotifers Asplanchna brigthwellii and Brachionus calyciflorus. Hidrobiológica, 23(1), 82–86.

    Google Scholar 

  • Schäfer, S., Buchmeier, G., Claus, E., Duester, L., Heininger, P., Körner, A., Mayer, P., Paschke, A., Rauert, C., Reifferscheid, G., Rüdel, H., Schletriem, C., Schröter-Kermani, C., Schudoma, D., Smedes, F., Steffen, D., & Vietoris, F. (2015). Bioaccumulation in aquatic systems: Methodological approaches, monitoring and assessment. Environmental Sciences Europe, 27, 5. https://doi.org/10.1186/s12302-014-0036-z

    Article  CAS  Google Scholar 

  • Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension - Results from two tunnel studies. Atmospheric Environment, 36(30), 4735–4744. https://doi.org/10.1016/S1352-2310(02)00561-7

    Article  CAS  Google Scholar 

  • Stockdale, A., Tipping, E., Lofts, S., Ormerod, S. J., Clements, W. H., & Blust, R. (2010). Toxicity of proton–metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquatic Toxicology, 100(1), 112–119. https://doi.org/10.1016/j.aquatox.2010.07.018

    Article  CAS  Google Scholar 

  • Sytar, O., Ghosh, S., Malinska, H., Zivcak, M., & Brestic, M. (2020). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum, 173(1), 148–166. https://doi.org/10.1111/ppl.13285

    Article  CAS  Google Scholar 

  • Torres-Orozco, D., Jiménez-Sierra, C. L., Sosa Ramírez, J., Cortés-Calva, P., Breceda, A., Iñiguez, L. I., & Ortega-Rubio, A. (2015). La importancia de las áreas naturales protegidas en nuestro país. In A. Ortega– Rubio, M. J. Pinkus-Rendón & I. C. Espitia-Moreno (Eds.), Las Áreas Naturales Protegidas y la Investigación Científica en México. (pp.41–64). CIBNOR, UAY, UM de San Nicolás de Hidalgo.

  • Tran, K. C., Valdes, D., Euan, J., Real, E., & Gil, E. (2002). Status of water quality at Holbox Island, Quintana Roo State. Mexico. Aquatic Ecosystem Health & Management, 5(2), 173–189. https://doi.org/10.1080/14634980290031875

    Article  CAS  Google Scholar 

  • Turekian, K., & Wedepohl, K. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (1983). EPA 600/4‐79‐020 Methods for Chemical Analysis of Water and Wastes.

  • USEPA. (2012). Recreational Water Quality Criteria. Office of Water 820-F-12–058. Retrieved April 13th, 2022, from https://www.epa.gov/sites/default/files/2015-10/documents/rwqc2012.pdf

  • Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soil- effect of variations in digestion conditions and of inorganic soil constituents. Soil Science., 63(4), 251–264.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, B., & Zhang, W. (2020). Distribution and risk analysis of heavy metals in sediments from the Yangtze River Estuary. China. Environmental Science and Pollution Research, 27(10), 10802–10810. https://doi.org/10.1007/s11356-019-07581-x

    Article  CAS  Google Scholar 

  • WHO World Health Organization. (1992). Titanium - Environmental Health Criteria 24.

  • WHO World Health Organization. (1997). Aluminium - Environmental Health Criteria 194.

  • Wong, M. H., & Bradshaw, A. D. (1982). A comparison of the toxicity of heavy metals, using root elongation of rye grass. Lolium Perenne. New Phytologist, 91(2), 255–261. https://doi.org/10.1111/j.1469-8137.1982.tb03310.x

    Article  CAS  Google Scholar 

  • Xu, D., Gao, B., Peng, W., Liu, L., Wu, W., & Liu, X. (2020). Boron toxicity coefficient calculation and application for ecological risk assessment in reservoir sediments. Science of the Total Environment, 739, 139703.

    Article  CAS  Google Scholar 

  • Zafra-Mejía, C., Rondón-Quintana, H., & Beltrán-Vargas, J. (2017). Acumulación de metales pesados en sedimentos viales urbanos: factores de interés en salud pública. Revista de la Facultad de Medicina, 65(4), 655–664. https://doi.org/10.15446/revfacmed.v65n4.57690

Download references

Acknowledgements

To Gonzalo Aldana and Mónica Salas (IBANQROO) for their help and support in Manatí Lagoon.

Funding

D. Demidof received a CONACYT scholarship (1063500) and financial support from OEA-CONACYT-2020. This research was funded by Catedras CONACYT grant 2944 “Water cycle modeling of the Yucatan Peninsula” and CONAGUA 37001 “Atlas of wetlands.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cejudo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidof, D.C.H., Alvarado-Flores, J., Acosta-González, G. et al. Distribution and ecological risk of metals in an urban natural protected area in the Riviera Maya, Mexico. Environ Monit Assess 194, 579 (2022). https://doi.org/10.1007/s10661-022-10244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10244-z

Keywords

Navigation