Skip to main content

Advertisement

Log in

Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sargassum strandings in the coastal environment can introduce arsenic into food webs. In this context, we assessed the risk of exposure to arsenic for consumers of Caribbean bivalves. In 2019, specimens of Asaphis deflorata and Phacoides pectinatus were collected in an Atlantic coastal zone of Martinique (island) to monitor the presence of arsenic species by LC-ICP-MS. The total arsenic (tAs) concentrations were, on average, 34.4 ± 3.8 and 76.9 ± 22.3 µg.g−1 dry weight for P. pectinatus and A. deflorata, respectively. Seven compounds of arsenic were detected in bivalve soft bodies. In P. pectinatus, monomethylarsonic acid was present at a relatively significant concentration (≈ 29.6%). These results were coupled with survey data collected in 2013 and again in 2019, from the main consumers of bivalves. The tAs intake was up to 6 mg.day–1 for a 240 g (wet weight) meal of bivalves. In addition, we proposed toxicological reference doses also based on detected toxic forms of arsenic and tested their relevance. We concluded that monitoring of total arsenic would be sufficient to ensure the protection of bivalve consumers. Consumption patterns expose consumers to a potential health risk. However, due to a decrease in consumption frequency associated with the depletion of bivalve resources by decomposing Sargassum mats, arsenic exposure has decreased. In the French Caribbean, this is the first study on the risk of human arsenic contamination from the ingestion of bivalves. This study is a contribution to the monitoring of arsenic in the Caribbean coastal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during this study are available from the corresponding author upon reasonable request.

Notes

  1. Forschungs und beratungs institut gefahrstoffe gmbh (research and consulting institute for hazardous) substances gmbh).

  2. Institut Français de Recherche pour l'Exploitation de la Mer (French Research Institute for Exploitation of the Sea).

  3. Direction de l’Environnement, de l’Aménagement et du Logement (Directorate for the Environment, Planning and Housing).

  4. National Institute of Statistics and Economic Studies.

References

  • Al Mamun, M. A., Omori, Y., Miki, O., Rahman, I. M., Mashio, A. S., Maki, T., & Hasegawa, H. (2019). Comparative biotransformation and detoxification potential of arsenic by three macroalgae species in seawater: Evidence from laboratory culture studies. Chemosphere, 228, 117–127. https://doi.org/10.1016/j.chemosphere.2019.04.056

    Article  CAS  Google Scholar 

  • ANSES. (2009). Opinion1 of the French Food Safety Agency relating to the maximum inorganic arsenic content recommended for Laminaria algae and the methods of consumption of these algae given their high iodine content Afssa Referral n 2007-SA-0007 April 2009. https://www.anses.fr/fr/system/files/RCCP2007sa0007.pdf. Accessed 10 March 2020. (In French).

  • ANSES. (2011). Second French Total Diet Study (TDS2). Report 1. Inorganic contaminants, persistent organic pollutants, mycotoxins and phytoestrogens. ANSES Opinion. Juin 2011 https://www.anses.fr/en/system/files/PASER2006sa0361Ra1EN.pdf. Accessed 20 April 2020.

  • ANSES. (2017b). Toxicological reference values. Anses Development Guide. https://www.anses.fr/fr/system/files/SUBSTANCES2017aSA0016Ra.pdf. Accessed 15 March 2020. (In French).

  • ANSES (2017a) Revised opinion of the Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail on “the problem of fumes from decomposing Sargasso seaweed in the West Indies and French Guiana”. Recommendation n°2015-SA-0225. https://www.anses.fr/fr/system/files/AIR2015SA0225Ra.pdf. Accessed 15 April 2020. (In French).

  • Arkusz, J., Stańczyk, M., Lewińska, D., & Stępnik, M. (2005). Modulation of murine peritoneal macrophage function by chronic exposure to arsenate in drinking water. Immunopharmacology and Immunotoxicology, 27(2), 315–330. https://doi.org/10.1081/IPH-200067947

    Article  CAS  Google Scholar 

  • Arnaud, L., Senergue, M. & Devau, N. (2013). Detailed study of the geochemical background of Martinique groundwater. Report BRGM/RP-62886-FR. (in French).

  • ATSDR. (2007). Toxicological profile for Arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Toxicological profile for arsenic (cdc.gov). https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf. Accessed 15 March 2020.

  • Azizi, G., Akodad, M., Baghour, M., Layachi, M., & Moumen, A. (2018). The use of Mytilus spp. mussels as bioindicators of heavy metal pollution in the coastal environment. A review. Journal of Materials and Environmental Science, 9(4), 1170–1181.

  • Bach, J., Peremartí, J., Annangi, B., Marcos, R., & Hernández, A. (2016). Oxidative DNA damage enhances the carcinogenic potential of in vitro chronic arsenic exposures. Archives of Toxicology, 90(8), 1893–1905. https://doi.org/10.1007/s00204-015-1605-7

    Article  CAS  Google Scholar 

  • Barbosa, I. D. S., Brito, G. B., Dos Santos, G. L., Santos, L. N., Teixeira, L. S., Araujo, R. G., & Korn, M. G. A. (2019). Multivariate data analysis of trace elements in bivalve molluscs: Characterization and food safety evaluation. Food Chemistry, 273, 64–70. https://doi.org/10.1016/j.foodchem.2018.02.063

    Article  CAS  Google Scholar 

  • Bertrand, J., Abarnou, A., Bocquene, G., Chiffoleau, J. -F., & Reynal, L. (2009). Diagnosis of the chemical contamination of the fish fauna of the French West Indies coasts. 2008 campaigns in Martinique and Guadeloupe. (Direction régionale de l'Environnement (DIREN) Guadeloupe et Martinique, Direction des Services Vétérinaires (DSV) Guadeloupe et Martinique), Onema, Ref. CHDC-2009_Rapport.doc, 17/11/2009, p.10. https://archimer.ifremer.fr/doc/00000/6896/. Accessed 22 April 2020. (In French).

  • Bisson M., Vivier S., La Rocca B., & Gourland, C. (2009). Update on toxicological reference values (VTR), STUDY REPORT 17/03/2009, DRC-08–94380–11776C, INERIS, [Online]. http://www.ineris.fr/hml. Accessed 15 March 2020. (In French).

  • Bhakta, J. N., & Ali, M. M. (2020). Biosorption of arsenic: An emerging eco-technology of arsenic detoxification in drinking water. In Arsenic Water Resources Contamination (pp. 207–230). Springer, Cham. https://doi.org/10.1007/978-3-030-21258-2_9

  • Buchet, J. P., Lison, D., Ruggeri, M., Foa, V., Elia, G., & Maugeri, S. (1996). Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Archives of Toxicology, 70(11), 773–778. https://doi.org/10.1007/s002040050339

    Article  CAS  Google Scholar 

  • Camurati, J. R., & Salomone, V. N. (2020). Arsenic in edible macroalgae: An integrated approach. Journal of Toxicology and Environmental Health, Part B, 23(1), 1–12. https://doi.org/10.1080/10937404.2019.1672364

    Article  CAS  Google Scholar 

  • Cao, Y., Takata, A., Hitomi, T., & Yamauchi, H. (2019). Metabolism and toxicity of organic arsenic compounds in marine organisms. In Arsenic Contamination in Asia (pp. 119–136). Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_7

  • Chakraborti, D., Rahman, M. M., Das, B., Chatterjee, A., Das, D., Nayak, B., ... & Kumar, M. (2017). Groundwater arsenic contamination and its health effects in India. Hydrogeology Journal, 25(4), 1165–1181. https://doi.org/10.1007/s10040-017-1556-6

  • Chen, C. J. (2010). Health hazards of arsenic in drinking water. In Arsenic in Geosphere and Human Diseases; Arsenic 2010 (pp. 307–309). CRC Press.

  • Chen, Y., Parvez, F., Gamble, M., Islam, T., Ahmed, A., Argos, M., ... & Ahsan, H. (2009). Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicology and Applied Pharmacology, 239(2), 184–192. https://doi.org/10.1016/j.taap.2009.01.010

  • Chevallier, E., Chekri, R., Zinck, J., Guérin, T., & Noël, L. (2015). Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation based on the accuracy profile. Journal of Food Composition and Analysis, 41, 35–41. https://doi.org/10.1016/j.jfca.2014.12.024

    Article  CAS  Google Scholar 

  • Dereumeaux, C. & Saoudi, A. (2018). Impregnation of the Caribbean population by chlordecone and certain organochlorine compounds in 2013–2014: Kannari study. Synthesis report. Collection: Santé environnement, p. 86. https://www.Chlordecone-infos.fr/sites/default/files/documents/impregnation-chlordecone-kannari.pdf. Accessed 12 Aug. 2020. (In French).

  • Devault, D. A., Massat, F., Dupuy, L., Lambourdière, J., Ménez, F., Maridakis, C., Hervé, V. A., Péné-Annette, A., Trouillefou, M., Dolique, F., & Lopez, P.-J. (2019). Contamination of Sargassum by chlordecone: The other challenge of stranding in the West Indies. Colloquium of the French research Group about Pesticides. (In French).

    Google Scholar 

  • Devault, D. A., Modestin, E., Trouillefou, M., Massat, F., Lopez, P. -J., & Dolique, F. (2020). Sargassum contamination by arsenic and chlordecone: Fate ashore and in compost. SETAC 3–7 May 2020, Scicom virtual SETAC Dublin.

  • Devault, D. A., Massat, F., Baylet, A., Dolique, F., & Lopez, P.-J. (2021). Arsenic and chlordecone contamination and decontamination toxicokinetics in Sargassum sp. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-12127-7

    Article  Google Scholar 

  • Dia, M., Zentar, R., Abriak, N. E., Nzihou, A., Depelsenaire, G., & Germeau, A. (2019). Effect of phosphatation and calcination on the environmental behaviour of sediments. International Journal of Sediment Research, 34(5), 486–495. https://doi.org/10.1016/j.ijsrc.2018.10.002

    Article  Google Scholar 

  • Dietschi, R., & Gérald Falc'hun, G. (2018). Sargasso arrivals in the French West Indies: Implication of Cedre and similarities with oil (p. 21). Cedre Technical Day -15 November 2018, Brest. Oil spills in tropical environments (mangroves, corals). http://wwz.cedre.fr/content/download/9717/file/SARGASSES-JTCedre2018-RD-GF.pdf. Accessed 15 April 2021. (In French).

  • Dolique, F., Sedrati, M., Charpentier, J., Jeanson, M., Cohen, O., Dupuy, L., & Alami, S. (2019). Beaches seasonal and paroxysmal morphosedimentary dynamics: Results of 10 years Martinique Coastal Observation Network. Journal of Coastal Research, 88(sp1), 172–184. https://doi.org/10.2112/SI88-013.1

    Article  Google Scholar 

  • Du, S., Zhou, Y., & Zhang, L. (2021). The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China. Sciences of Total Environnement, 773, 145068. https://doi.org/10.1016/j.scitotenv.2021.145068

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority). (2010). Management of left-censored data in dietary exposure assessment of chemical substances. EFSA Journal, 8(3), 1557; 96. https://doi.org/10.2903/j.efsa.2010.1557. Accessed 12 Aug 2019.

  • Falco, G., Lobet, J. M. L., Bocio, A., & Domingo, J. L. (2006). Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. https://www.epa.gov/risk/human-health-riskassessment. https://doi.org/10.1021/jf0610110

  • Fattorini, D., Sarkar, S. K., Regoli, F., Bhattacharya, B. D., Rakshit, D., Satpathy, K. K., & Chatterjee, M. (2013). Levels and chemical speciation of arsenic in representative biota and sediments of a tropical mangrove wetland, India. Environmental Science: Processes & Impacts, 15(4), 773–782. https://doi.org/10.1039/C3EM30819G

    Article  CAS  Google Scholar 

  • Ferrante, M., Napoli, S., Grasso, A., Zuccarello, P., Cristaldi, A., & Copat, C. (2019). Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: A health risk assessment. Food and Chemical Toxicology, 126, 322–331. https://doi.org/10.1016/j.fct.2019.01.010

    Article  CAS  Google Scholar 

  • Filippini, M., Baldisserotto, A., Menotta, S., Fedrizzi, G., Rubini, S., Gigliotti, D., & Vertuani, S. (2021). Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere, 263, 127983. https://doi.org/10.1016/j.chemosphere.2020.127983

    Article  CAS  Google Scholar 

  • Francesconi, K. A., & Edmonds, J. S. (1996). Arsenic and marine organisms. In Advances in Inorganic Chemistry (pp. 147–189). Academic Press. https://doi.org/10.1016/S0898-8838(08)60130-0

  • Giangrande, A., Licciano, M., Del Pasqua, M., Fanizzi, F. P., Migoni, D., & Stabili, L. (2017). Heavy metals in five Sabellidae species (Annelida, Polychaeta): Ecological implications. Environmental Science and Pollution Research, 24(4), 3759–3768. https://doi.org/10.1007/s11356-016-8089-8

    Article  Google Scholar 

  • HAS (High Authority for Health). (2020). Arsenic, Recommendations. Good professional practices service. https://www.has-sante.fr/upload/docs/application/pdf/2020-03/reco_arsenic.pdf. Accessed 10 Aug 2020. (In French).

  • Health Canada. (2008). Guidelines for Canadian drinking water qualitySummary table: Introduction. Health Canada, Ottawa, Ont. Available from http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/sum_guide-res_recom/intro-eng.php. Accessed 6 April 2020.

  • Hirano, S., & Kobayashi, Y. (2006). Cytotoxic effects of S-(dimethylarsino)-glutathione: A putative intermediate metabolite of inorganic arsenicals. Toxicology, 27(1–2), 45–52. https://doi.org/10.1016/j.tox.2006.07.009

    Article  CAS  Google Scholar 

  • Hou, Y., Xue, P., Woods, C. G., Wang, X., Fu, J., Yarborough, K., Qu, W., Zhang, Q., Andersen, M. E., & Pi, J. (2013). Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environmental Health Perspective, 121(2), 237–243. https://doi.org/10.1289/ehp.1205731

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (1987). Summaries and evaluations: Arsenic and arsenic compounds (Group 1) (p. 100). Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7. Lyon. http://www.inchem.org/documents/iarc/suppl7/arsenic.html. Accessed 2 April 2020.

  • IEDOM. (2019). Annual report. Martinique 2019. ISBN 978–2–35292–028–1. https://www.iedom.fr/IMG/pdf/ra_martinique_vf.pdf. Accessed 8 April 2021. (In French).

  • INERIS (National Institute for the Industrial Environment and Risks). (2007). Development of new reference toxicological values for arsenic. INERIS–DRC–078345112360A. https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/arsenicdrc.pdf. Accessed 1 April 2020. (In French).

  • INERIS. (2010). Arsenic and its inorganic derivatives. Toxicological and Environmental Data Sheet for Chemical Substances. INERIS- DRC-09–103112–11453A Version N°4 – 2010. https://www.ineris.fr/sites/ineris.fr/file:///C:/Users/DM/Downloads/arsenic.pdf. Accessed 1 April 2020. (In French).

  • INERIS. (2016). Choice of toxicological reference values - INERIS methodology. Impact of human activities on health. DRC-16–156196–1130.https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/drc-16-156196-11306a-1494926651.pdf. Accessed 20 April 2020. (In French).

  • INSEE. (2021). Statistics and Studies Evolution and structure of the population in 2018 - Department of Martinique. https://www.insee.fr/fr/statistiques/5397441?geo=DEP-972. Accessed 30 July 2021. (In French).

  • Ishizaki, M. (1979). Arsenic content in foods on the market and its average daily intake. Nippon Eiseigaku Zasshi (japanese Journal of Hygiene), 34(4), 605–611. https://doi.org/10.1265/jjh.34.605. (In Japanese).

    Article  CAS  Google Scholar 

  • Jeanson, M., Dolique, F., Sedrati, M., Cohen, O., Bertier, J., Cavalin, A., Charpentier, J., & Anthony, E. J. (2016). Wave modifications across a coral reef: Cap Chevalier, Martinique Island. Journal of Coastal Research, 75(sp1), 582–586. https://doi.org/10.2112/SI75-117.1

    Article  Google Scholar 

  • Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P., & Sanchez-Rubio, G. (2013). The Sargassum invasion of the Eastern Caribbean and Dynamics of the Equatorial North Atlantic Invasión de Sargazo en el Caribe Oriental y la Dinámica en la Zona Ecuatorial del Atlántico Norte. Proceedings of the 65th gulf and caribbean fisheries institute (pp. 102–103). (In Spanish).

  • Kaise, T., & Fukui, S. (1992). The chemical form and acute toxicity of arsenic compounds in marine organisms. Applied Organometallic Chemistry, 6(2), 155–160. https://doi.org/10.1002/aoc.590060208

    Article  CAS  Google Scholar 

  • Kato, L. S., Ferrari, R. G., Leite, J. V. M., & Conte-Junior, C. A. (2020). Arsenic in shellfish: A systematic review of its dynamics and potential health risks. Marine Pollution Bulletin, 161, 111693. https://doi.org/10.1016/j.marpolbul.2020.111693

    Article  CAS  Google Scholar 

  • Kerkvliet, N. I., Steppan, L. B., Koller, L. D., & Exon, J. H. (1980). Immunotoxicology studies of sodium arsenate-effects of exposure on tumor growth and cell-mediated tumor immunity. Journal of Environmental Pathology and Toxicology, 4(5–6), 65–79. https://doi.org/10.1289/ehp.1104579

    Article  CAS  Google Scholar 

  • Khairul, I., Wang, Q. Q, Jiang, Y. H, Wang, C. & Naranmandura, H. (2017). Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget, 8(14), 23905. https://doi.org/10.18632/oncotarget.14733

  • Khaska, M., La Salle, C. L. G., Sassine, L., Cary, L., Bruguier, O., & Verdoux, P. (2018). Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints. Journal of Hydrology, 558, 341–355. https://doi.org/10.1016/j.jhydrol.2018.01.031

    Article  CAS  Google Scholar 

  • Kligerman, A. D., Doerr, C. L., Tennant, A. H., Harrington‐Brock, K., Allen, J. W., Winkfield, E., ... & DeMarini, D. M. (2003). Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: Induction of chromosomal mutations but not gene mutations. Environmental and Molecular Mutagenesis, 42(3), 192–205. https://doi.org/10.5487/TR.2008.24.3.161

  • Koch, I., McPherson, K., Smith, P., Easton, L., Doe, K. G., & Reimer, K. J. (2007). Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. Marine Pollution Bulletin, 54(5), 586–594. https://doi.org/10.1016/j.marpolbul.2006.12.004

    Article  CAS  Google Scholar 

  • Krishnakumar, P. K., Qurban, M. A., Stiboller, M., Nachman, K. E., Joydas, T. V., Manikandan, K. P., ... & Francesconi, K. A. (2016). Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Science of the Total Environment, 566, 1235-1244. https://doi.org/10.1016/j.scitotenv.2016.05.180

  • Krüger, K., Straub, H., Hirner, A. V., Hippler, J., Binding, N., & Muβhoff, U. (2009). Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicology and Applied Pharmacology, 236(1), 115–123. https://doi.org/10.1016/j.taap.2008.12.025

    Article  CAS  Google Scholar 

  • Laiche, H., El Asri, O., Erraji, H., & Afilal, M. E. (2017). Quality comparison of two methacomposts comes from animal rearing of laboratory and University Restaurant of Oujda University in Morocco. Journal of Materials and Environmental Science, 8(7), 2592–2598.

    CAS  Google Scholar 

  • Laperche, V., Bodénan, F., Dictor, M. C. & Baranger, Ph. (2003). Methodological guide to arsenic, applied to the management of polluted sites and soils (p. 90). BRGM/RP-52066-FR, fig. 5, tabl.10, ann.3. In French http://infoterre.brgm.fr/rapports/RP-52066-FR.pdf. Accessed 20 May 2020. (In French).

  • Leblanc, J. C., Guérin, T., Noël, L., Calamassi-Tran, G., Volatier, J. L., & Verger, P. (2005). Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Additives and Contaminants, 22(7), 624–641. https://doi.org/10.1080/02652030500135367

  • Li, W., Wei, C., Zhang, C., Van Hulle, M., Cornelis, R., & Zhang, X. (2003). A survey of arsenic species in Chinese seafood. Food and Chemical Toxicology, 41(8), 1103–1110. https://doi.org/10.1016/S0278-6915(03)00063-2

    Article  CAS  Google Scholar 

  • Liberge, M., Gros, O., & Frenkiel, L. (2001). Lysosomes and sulfide-oxidizing bodies in the bacteriocytes of Lucina pectinata, a cytochemical and microanalysis approach. Marine Biology, 139(3), 401–409. https://doi.org/10.1007/s002270000526

    Article  CAS  Google Scholar 

  • Lim, Y. R., Shojaei, F., Park, K., Jung, C. S., Park, J., Cho, W. I., & Kang, H. S. (2018). Arsenic for high-capacity lithium-and sodium-ion batteries. Nanoscale, 10(15), 7047–7057. https://doi.org/10.1039/C8NR00276B

    Article  CAS  Google Scholar 

  • Lions, J., Allier, D., Pinson, S., & Vittecoq, B. (2008). Identification of areas of high geochemical background risk in rivers and groundwater in Martinique. In Technical Report BRGM RP-56748-FR.

  • Liu, C. W., Liang, C. P., Lin, K. H., Jang, C. S., Wang, S. W., Huang, Y. K., & Hsueh, Y. M. (2007). Bioaccumulation of arsenic compounds in aquacultural clams (Meretrix lusoria) and assessment of potential carcinogenic risks to human health by ingestion. Chemosphere, 69(1), 128–134. https://doi.org/10.1016/j.chemosphere.2007.04.038

    Article  CAS  Google Scholar 

  • Liu, J., Cao, L., & Dou, S. (2017). Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay. China. Marine Pollution Bulletin, 117(1–2), 98–110. https://doi.org/10.1016/j.marpolbul.2017.01.062

    Article  CAS  Google Scholar 

  • Lo Dico, G. M., Cammilleri, G., Macaluso, A., Vella, A., Giangrosso, G., & Vazzana, M. (2015). Simultaneous Determination of As, Cu, Cr, Se, Sn, Cd, Sb and Pb Levels in Infant Formulas by ICP-MS after microwave-assisted digestion: Method validation. Journal of Environmental & Analytical Toxicology, 5, 328. https://doi.org/10.4172/2161-0525.1000328

  • Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T., & Zhao, M. (2018). Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture, 497, 49–55. https://doi.org/10.1016/j.aquaculture.2018.07.040

    Article  CAS  Google Scholar 

  • Maher, W., Waring, J., Krikowa, F., Duncan, E., & Foster, S. (2018). Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environmental Chemistry, 15(2), 46–57. https://doi.org/10.1071/EN17106

    Article  CAS  Google Scholar 

  • Maji, S., Ghosh, I., Mukherjee, K., Sahu, S. K., & Biswas, J. (2016). Recurrent arsenic induced cancers over 20 years: A surgeon’s nightmare!. Sri Lanka Journal of Surgery, 34(4). https://doi.org/10.4038/sljs.v34i4.8324

  • Mana, S. C. A., Fatt, N. T., & Ashraf, M. A. (2017). The fate and transport of arsenic species in the aquatic ecosystem: A case study on Bestari Jaya, Peninsular Malaysia. Environmental Science and Pollution Research, 24(29), 22799–22807. https://doi.org/10.1007/s11356-016-8195-7

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Bataillard, P., Séby, F., Crouzet, C., Moulin, A., Guezennec, A. G., Hurel, C., Marmier, N., & Battaglia-Brunet, F. (2013). Arsenic in marina sediments from the Mediterranean coast: Speciation in the solid phase and occurrence of thioarsenates. Soil and Sediment Contamination: An International Journal, 22(8), 984–1002. https://doi.org/10.1080/15320383.2013.770441

    Article  CAS  Google Scholar 

  • Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L., & Lam, W. L. (2011). Arsenic exposure and the induction of human cancers. Journal of Toxicology, 2011https://doi.org/10.1155/2011/431287

  • Mass, M. J., Tennant, A., Roop, B. C., Cullen, W. R., Styblo, M., Thomas, D. J., & Kligerman, A. D. (2001). Methylated trivalent arsenic species are genotoxic. Chemical Research in Toxicology, 14(4), 355–361. https://doi.org/10.1021/tx000251l

    Article  CAS  Google Scholar 

  • Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science, 5(1), 1–11. https://doi.org/10.1186/s40645-018-0224-3

    Article  CAS  Google Scholar 

  • Mateen, F. J., Grau-Perez, M., Pollak, J. S., Moon, K. A., Howard, B. V., Umans, J. G., Best, L. G., Francesconi, K. A., Goessler, W., Crainiceanu, C., & Guallar, E. (2017). Chronic arsenic exposure and risk of carotid artery disease: The Strong Heart Study. Environmental Research, 157, 127–134. https://doi.org/10.1016/j.envres.2017.05.020

    Article  CAS  Google Scholar 

  • Maull, E. A., Ahsan, H., Edwards, J., Longnecker, M. P., Navas-Acien, A., Pi, J., Silbergeld, E. K., Styblo, M., Tseng, C.-H., Thayer, K. A., & Loomis, D. (2012). Evaluation of the association between arsenic and diabetes: A National Toxicology Program workshop review. Environmental Health Perspective, 120(12), 1658–1670. https://doi.org/10.1289/ehp.1104579

    Article  CAS  Google Scholar 

  • McDermott, T. R., Stolz, J. F., & Oremland, R. S. (2020). Arsenic and the gastrointestinal tract microbiome. Environmental Microbiology Reports, 12(2), 136–159. https://doi.org/10.1111/1758-2229.12814

    Article  Google Scholar 

  • Medunić, G., Fiket, Ž., & Ivanić, M. (2020). Arsenic contamination status in Europe, Australia, and other parts of the world. In Arsenic in Drinking Water and Food (pp. 183–233). Springer, Singapore. https://doi.org/10.1007/978-981-13-8587-2_6

  • Merle, B., Deschamps, V. & Merle, S. (2008). Health and Food Behaviour Survey in Martinique (Escal 2003-2004). Results of the Food consumption and nutritional intake component.report Invs, p.37. https://www.santepubliquefrance.fr/regions/antilles. Accessed 18 July 2020 (In French).

  • Miedico, O., Iammarino, M., Tarallo, M., & Chiaravalle, A. E. (2017). Application of inductively coupled plasma–mass spectrometry for trace element characterisation of equine meats. International Journal of Food Properties, 20(12), 2888–2900. https://doi.org/10.1080/10942912.2016.1256304

    Article  CAS  Google Scholar 

  • Milledge, J. J., Maneein, S., Arribas López, E., & Bartlett, D. (2020). Sargassum inundations in turks and caicos: Methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies, 13(6), 1523. https://doi.org/10.3390/en13061523

    Article  CAS  Google Scholar 

  • Millour, S., Noel, L., Kadar, A., Chekri, R., Vastel, C., & Guerin, T. (2011). Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation. Journal of Food Composition and Analysis, 24(1), 111–120. https://doi.org/10.1016/j.jfca.2010.04.002

    Article  CAS  Google Scholar 

  • Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15(10), 2278. https://doi.org/10.3390/ijerph15102278

    Article  CAS  Google Scholar 

  • Mitra, A., Chatterjee, S., & Gupta, D. K. (2017). Uptake, transport, and remediation of arsenic by algae and higher plants. In Arsenic Contamination in the Environment (pp. 145–169). Springer, Cham. https://doi.org/10.3390/agronomy7040067

  • Modestin, E. (2017). Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791). Journal of Advances in Biology, 1, 2092–2107. https://doi.org/10.24297/jab.v10i2.6355

  • Moe, B., Peng, H., Lu, X., Chen, B., Chen, L. W., Gabos, S., Li, X. F., & Le, X. C. (2016). Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. Journal of Environmental Sciences, 49, 113–124. https://doi.org/10.1016/j.jes.2016.10.004

    Article  CAS  Google Scholar 

  • Nakao, M. (1960). A study on the arsenic content in daily food consumption in Japan. Journal of the Osaka City Medical Center, 9, 541–571.

    CAS  Google Scholar 

  • Naranmandura, H., Carew, M. W., Xu, S., Lee, J., Leslie, E. M., Weinfeld, M., & Le, X. C. (2011). Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chemical Research in Toxicology, 24(9), 1586–1596. https://doi.org/10.1021/tx200291p

    Article  CAS  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development). Publishing, & Food and Agriculture Organization. (2017). Fish and Seafood. In OECD-FAO Agricultural Outlook 2017–2026. OECD Publishing, Paris. https://doi.org/10.1787/agr_outlook-2017-12-en.Accessed10March2020

  • Ortega-Flores, P. A., Serviere-Zaragoza, E., De Anda-Montañez, J. A., Freile-Pelegrín, Y., Robledo, D., & Méndez-Rodríguez, L. C. (2022). Trace elements in pelagic Sargassum species in the Mexican Caribbean: Identification of key variables affecting arsenic accumulation in S. fluitans. Science of The Total Environment806, 150657. https://doi.org/10.1016/j.scitotenv.2021.150657

  • Peshut, P. J., Morrison, R. J., & Brooks, B. A. (2008). Arsenic speciation in marine fish and shellfish from American Samoa. Chemosphere, 71(3), 484–492. https://doi.org/10.1016/j.chemosphere.2007.10.014

    Article  CAS  Google Scholar 

  • Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., & Aposhian, H. V. (2000). Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology, 163(2), 203–207. https://doi.org/10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  • Pétursdóttir, Á. H. E. (2010). Determination of toxic and non-toxic arsenic species in Icelandic fish meal (Doctoral dissertation).

  • Phillips, D. J. H. (1990). Arsenic in aquatic organisms: A review, emphasizing chemical speciation. Aquatic Toxicology, 16(3), 151–186. https://doi.org/10.1016/0166-445X(90)90036-O

    Article  CAS  Google Scholar 

  • Pons, J. C., Parra, M., Ferragne, A., & Latouche, C. (1989). Characteristics of the hydrothermal clays of Martinique - Lesser French Antilles. Applied Clay Science, 4(4), 307–325. https://doi.org/10.1016/0169-1317(89)90039-2. (In French).

    Article  CAS  Google Scholar 

  • Rodríguez-Martínez, R. E., Roy, P. D., Torrescano-Valle, N., Cabanillas-Terán, N., Carrillo-Domínguez, S., Collado-Vides, L., García-Sánchez, M., & van Tussenbroek, B. I. (2020). Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. PeerJ, 8, e8667. https://doi.org/10.7717/peerj.8667

    Article  Google Scholar 

  • Sabbioni, E., Fischbach, M., Pozzi, G., Pietra, R., Gallorini, M., & Piette, J. L. (1991). Cellular retention, toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line. Carcinogenesis, 12(7), 1287–1291. https://doi.org/10.1093/carcin/12.7.1287

  • Santos, C. M., Nunes, M. A., Barbosa, I. S., Santos, G. L., Peso-Aguiar, M. C., Korn, M. G., Flores, E. M., & Dressler, V. L. (2013). Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography–inductively coupled plasma-mass spectrometry. Spectrochimimy Acta Part B at Spectroscopy, 86, 108–114. https://doi.org/10.1016/j.sab.2013.05.029

    Article  CAS  Google Scholar 

  • Sarkar, A., Paul, D., Kazy, S. K., & Sar, P. (2016). Molecular analysis of microbial community in arsenic-rich groundwater of Kolsor, West Bengal. Journal of Environmental Sciences Health Part A, 51(3), 229–239. https://doi.org/10.1080/10934529.2015.1094339

    Article  CAS  Google Scholar 

  • Schmidt, L., Landero, J. A., Santos, R. F., Mesko, M. F., Mello, P. A., Flores, E. M., & Caruso, J. A. (2017). Arsenic speciation in seafood by LC-ICP-MS/MS: Method development and influence of culinary treatment. Journal of Analytical Atomic Spectrometry, 32(8), 1490–1499. https://doi.org/10.1039/C7JA00052A

    Article  CAS  Google Scholar 

  • Schroeder, H. A., & Balassa, J. B. (1966). Abnormal trace elements in man: Arsenic. Journal of Chronic Diseases;(United States)19. https://doi.org/10.1016/0021-9681(66)90152-4

  • Sechaud, A., & Allenou, J. -P. (2021). Chemical Contamination Observation Network (ROCCH). 2019. Monitoring in biota in Martinique. RBE/BIODIENV/21–01. https://archimer.ifremer.fr/doc/00694/80614/. Accessed 25 July 2021. (In French).

  • Seralini, G. E., & Jungers, G. (2020). Dataset of compounds in glyphosate-free herbicides. Data in Brief, 33, 106564. https://doi.org/10.1016/j.dib.2020.106564

    Article  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759. https://doi.org/10.1016/j.envint.2009.01.005

    Article  CAS  Google Scholar 

  • Shchukin, V. M., & Kuz’mina, N. E., Erina, A. A., Yashkir, V. A., & Merkulov, V. A. (2018). Comparative analysis of the heavy metal, aluminum, and arsenic contents in brown algae of various origins. Pharmaceutical Chemistry Journal, 52(7), 627–634. https://doi.org/10.1007/s11094-018-1872-8

    Article  CAS  Google Scholar 

  • Smetacek, V., & Zingone, A. (2013). Green and golden seaweed tides on the rise. Nature, 504(7478), 84–88. https://doi.org/10.1038/nature12860

    Article  CAS  Google Scholar 

  • Sobel, M. H., Sanchez, T. R., Jones, M. R., Kaufman, J. D., Francesconi, K. A., Blaha, M. J., ... & Navas‐Acien, A. (2020). Rice intake, arsenic exposure, and subclinical cardiovascular disease among US adults in MESA. Journal of the American Heart Association, 9(4), e015658. https://doi.org/10.1161/JAHA.119.015658

  • Spada, L., Annicchiarico, C., Cardellicchio, N., Giandomenico, S., & Di Leo, A. (2013). Heavy metals monitoring in mussels Mytilus galloprovincialis from the Apulian coasts (Southern Italy). Mediterranean Marine Science, 14(1), 99–108. https://doi.org/10.12681/mms.323

  • Styblo, M., Del Razo, L. M., Vega, L., Germolec, D. R., LeCluyse, E. L., Hamilton, G. A., ... & Thomas, D. J. (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 74(6), 289–299. https://doi.org/10.1007/s002040000134

  • Taïlamé, A. L. & Lions, J. (2017). Study of the hydrogeochemical background of the waterways of Martinique - Phase 2 (p. 53). Final report. BRGM/RP-65257-FR, ill. 23, ann. 12. https://www.observatoire-eau-martinique.fr/base-documentaire/document/1. Accessed 25 April 2021. (In French).

  • Tankoua, O. F., Buffet, P. E., Amiard, J. C., Amiard-Triquet, C., Mouneyrac, C., & Berthet, B. (2011). Potential influence of confounding factors (size, salinity) on biomarkers in the sentinel species Scrobicularia plana used in programmes monitoring estuarine quality. Environmental Science and Pollution Research, 18(8), 1253–1263. https://doi.org/10.1007/s11356-011-0479-3

    Article  CAS  Google Scholar 

  • Tapia-Gatica, J., González-Miranda, I., Salgado, E., Bravo, M. A., Tessini, C., Dovletyarova, E. A., Paltseva, A. A., & Neaman, A. (2020). Advanced determination of the spatial gradient of human health risk and ecological risk from exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (Puchuncaví, Chile). Enviromental Pollution, 258, 113488. https://doi.org/10.1016/j.envpol.2019.113488

    Article  CAS  Google Scholar 

  • Taylor, J. D., & Glover, E. A. (2000). Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geological Society, London, Special Publications, 177(1), 207–225. https://doi.org/10.1144/GSL.SP.2000.177.01.12

    Article  Google Scholar 

  • Taylor, V. F., Goodale, B., Raab, A., Schwerdtle, T., Reimer, K., Conklin, S., Karagas, M. R., & Francesconi, K. A. (2017). Human exposure to organic arsenic species from seafood. Sciences of the Total Environment, 580, 266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    Article  CAS  Google Scholar 

  • Teixeira, M. C., Santos, A. C., Fernandes, C. S., & Ng, J. C. (2020). Arsenic contamination assessment in Brazil-Past, present and future concerns: A historical and critical review. Science of the Total Environment, 730, 138217. https://doi.org/10.1016/j.scitotenv.2020.138217

    Article  CAS  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency). (1991). Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Office of Research and Development, 31–83. EPA (series 200). EPA/600/4–91/010. https://www.epa.gov/sites/default/files/2015-08/documents/method_200-7_rev_4-4_1994.pdf. Accessed 20 April 2020.

  • U.S. EPA (U.S. Environmental Protection Agency). (1993). Arsenic-reference dose for chronic oral exposure (RfD). http://www.epa.gov/ngispgm3/iris/. Accessed 4 March 2020.

  • U.S. EPA (U.S. Environmental Protection Agency). (1998). Monography inorganic arsenic- Integrated Risk Information System-Carcinogenicity Assessment for lifetime exposure. U.S. Environmental Protection Agency, Washington, 04/10/1998. http://www.epa.gov/ngispgm3/iris/. Accessed 6 March 2020.

  • Uede, K., & Furukawa, F. (2003). Skin manifestations in acute arsenic poisoning from the Wakayama curry-poisoning incident. British Journal of Dermatology, 149(4), 757–762. https://doi.org/10.1046/j.1365-2133.2003.05511.x

    Article  CAS  Google Scholar 

  • Velez, D., Ybanez, N., & Montoro, R. (1995). Percentages of total arsenic represented by arsenobetaine levels of manufactured seafood products. Journal of Agricultural and Food Chemistry, 43(5), 1289–1294. https://doi.org/10.1021/jf00053a030

    Article  CAS  Google Scholar 

  • Vieira, B. R., Pintor, A. M., Boaventura, R. A., Botelho, C. M., & Santos, S. C. (2017). Arsenic removal from water using iron-coated seaweeds. Journal of Environmental Management, 192, 224–233. https://doi.org/10.1016/j.jenvman.2017.01.054

    Article  CAS  Google Scholar 

  • Wang, D., Abriak, N. E., & Zentar, R. (2017). Dredged marine sediments used as novel supply of filling materials for road construction. Marine Georesources & Geotechnology, 35(4), 472–480. https://doi.org/10.1080/1064119X.2016.1198945

    Article  Google Scholar 

  • Wang, M., Hu, C., Barnes, B. B., Mitchum, G., Lapointe, B., & Montoya, J. P. (2019). The great Atlantic Sargassum belt. Science, 365(6448), 83–87. https://doi.org/10.1126/science.aaw7912

    Article  CAS  Google Scholar 

  • Whaley-Martin, K. J., Koch, I., Moriarty, M., & Reimer, K. J. (2012). Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environmental Science & Technology, 46(6), 3110–3118. https://doi.org/10.1021/es203812u

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). (2008). Guidelines for drinking-water quality, 3rd edition incorporating 1st and 2nd addenda. Vol. 1. Recommendations. Geneva, p. 306–308b https://www.who.int/publications-detail-redirect/9789241547611 Accessed 4 March 2020.

  • WHO/IPCS (World Health Organization/International Programme on Chemical Safety). (2009). Principles and methods for the risk assessment of chemicals in food, Environmental Health Criteria 240. Chapter 6: Dietary Exposure Assessment of Chemicals in Food. https://www.who.int/publications-detail-redirect/9789241572408. Accessed 2 April 2020.

  • Yokoi, K., & Konomi, A. (2012). Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regulatory Toxicology and Pharmacology, 63(2), 291–297. https://doi.org/10.1016/j.yrtph.2012.04.006

    Article  CAS  Google Scholar 

  • Yoshida, T. (2019). Exposure amount/duration leading to carcinogenesis due to chronic arsenic exposure–Examination of carcinogenesis avoidance by exposure reduction. Impact, 2019(8), 30–32 https://doi.org/10.21820/23987073.2019.8.30

  • Zhang, H. N., Yang, L., Ling, J. Y., Czajkowsky, D. M., Wang, J. F., Zhang, X. W., ... & Tao, S. C. (2015). Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proceedings of the National Academy of Sciences, 112(49), 15084–15089. https://doi.org/10.1073/pnas.1521316112

  • Zhang, W., Wang, W. X., & Zhang, L. (2013). Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary. Ecotoxicology, 22(4), 671–682. https://doi.org/10.1007/s10646-013-1059-8

    Article  CAS  Google Scholar 

  • Zhang, W., & Wang, W. X. (2018). Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes. Sciences of the Total Environment, 616, 594–601. https://doi.org/10.1016/j.scitotenv.2017.10.29

    Article  Google Scholar 

  • Zhang, W., Guo, Z., Wu, Y., Qiao, Y., & Zhang, L. (2019). Arsenic bioaccumulation and biotransformation in clams (Asaphis violascens) exposed to inorganic arsenic: Effects of species and concentrations. Bulletin of Environmental Contamination and Toxicology, 103(1), 114–119. https://doi.org/10.1007/s00128-018-2493-3

    Article  CAS  Google Scholar 

  • Zhao, L., Yang, F., Yan, X., Huo, Z., & Zhang, G. (2012). Heavy metal concentrations in surface sediments and manila clams (Ruditapes philippinarum) from the Dalian coast, China after the Dalian Port oil spill. Biological Trace Element Research, 149(2), 241–247. https://doi.org/10.1007/s12011-012-9412-y

    Article  CAS  Google Scholar 

  • Zmozinski, A. V., Llorente-Mirandes, T., López-Sánchez, J. F., & da Silva, M. M. (2015). Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS. Food Chemical, 173, 1073–1082. https://doi.org/10.1016/j.foodchem.2014.10.102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Marine Nature Park of Martinique for supplying part of the results on arsenic in bivalves, and the support of Martinique’s Division for the Environment, Housing and Land Management (DEAL). We also thank Mrs. Celia Northam and Emmanuelle Cibrelis for their help in the translation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Modestin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 5
figure 5

Risks assessment linked to arsenic in two edible bivalves in Martinique

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modestin, E., Devault, D.A., Baylet, A. et al. Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. Environ Monit Assess 194, 553 (2022). https://doi.org/10.1007/s10661-022-10230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10230-5

Keywords

Navigation