Skip to main content
Log in

Radiation exposure for the population living around the coal-fired power plant complexes in Vietnam

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A coal-fired power plant’s operation can release radioactive nuclides and radon gas into the environment, affecting the surrounding ecosystem. In this work, the collective effective dose due to the inhalation and the consumption of food containing the deposited radionuclides from the atmospheric release of the plants were evaluated. The results show that the radioactivity concentration in coal and fly ash samples depends on the origin of feed coal. The distribution of Th and U radionuclides in the 6a1 dust coal and bituminous coal is different. In general, the collective effective dose for different organs due to radiation exposure from the atmospheric release of two surveyed CFPP complexes are lower than the corresponding value published by UNSCEAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Asaduzzaman, K., Mannan, F., Khandaker, M. U., Farook, M. S., Elkezza, A., Amin, Y. B. M., Sharma, S., & Kassim, H. B. A. (2015). Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PLoS ONE, 10, e0140667. https://doi.org/10.1371/journal.pone.0140667

    Article  CAS  Google Scholar 

  • Ayc¸ik, G.A., Ercan, A. (1997). Radioactivity measurements of coals and ashes from coal-fired power plants in the Southwestern part of Turkey. Journal of Environmental Radioactivity, 35(1), 23–35. https://doi.org/10.1016/S0265-931X(96)00031-8

    Article  Google Scholar 

  • Bodizs, D., Gaspar, L., & Keomley, G. (1992). Emitted radioactivity from coal-fired power plants. Fizikai Szemle, 4, 135–140.

    Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Hu, Q. H. (2005). Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity, 82(2), 223–236. https://doi.org/10.1016/j.jenvrad.2005.01.009

    Article  CAS  Google Scholar 

  • Coles, D. G., Ragaini, R. C., Ondov, J. M., Fische, G. L., Silberman, D., & Prentice, B. A. (1979). Chemical studies of stack fly ash from a coal fired power plant. Environmental Science and Technology, 13, 455–459. https://doi.org/10.1021/es60152a007

    Article  CAS  Google Scholar 

  • Dinis, M. L., Fiúza, A., Góis, J., de Carvalho, J. S., & Castro, A. C. M. (2011). Assessment of direct radiological risk and indirect associated toxic risks originated by Coal - Fired Power Plants. Radioprotection, 46(6), S137–S143. https://doi.org/10.1051/radiopro/20116898s

    Article  Google Scholar 

  • EVN. (2018). Tài liệu Hội nghị sản xuất vật liệu xây dựng từ tro, xỉ. EVN, Hà nội, Việt Nam.

  • Flues, M., Moraes, V., & Mazzilli, B. P. (2002). The influence of a coal-fired power plant operation on radionuclide concentrations in soil. Journal of Environmental Radioactivity, 63, 285–294. https://doi.org/10.1016/s0265-931X(02)00035-8

    Article  CAS  Google Scholar 

  • IAE. (2016). World Energy Outlook 2016. OECD/IAE. (www.iea.org).

  • Kant, K., & Chakarvarti, S. K. (2003). Environmental impact of coal utilisation in thermal power plant. Journal of Punjab Academy of Forensic Medicine and Toxicology, 3, 15–18.

    Google Scholar 

  • Nikl, I., & Vegvari, I. (1992). The natural radioactivity of coal fired in thermal power plants of Hungary and of coal residues. Izotoptechnika Diagnosztika, 35, 57–64.

    CAS  Google Scholar 

  • Lauer, N., Vengosh, A., & Dai, S. (2017). Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science & Technology, 51(22), 13487–13493. https://doi.org/10.1021/acs.est.7b03473

    Article  CAS  Google Scholar 

  • Loan, T. T. H., Ba, V. N., Bang, N. V. T., Thy, T. H. N., Hong, H. T. Y., & Huy, N. Q. (2018). Natural radioactivity and radiological health hazard assessment of chemical fertilizers in Viet Nam. Journal of Radioanalytical and Nuclear Chemistry, 316(1), 111–117. https://doi.org/10.1007/s10967-018-5719-2

    Article  CAS  Google Scholar 

  • McBride, J. P., Moore, R. E., Witherspoon, J. P., & Blanco, R. E. (1978). Radiological impact of airborne effluents of coal and nuclear plants. Science, 202, 1045–1050.

    Article  CAS  Google Scholar 

  • Industries, O., & Inc. (2012). GMX series – Gamma - X HPGe Coaxial Photon Detector system. AMETEK, Inc.

    Google Scholar 

  • Pandit, G. G., Sahu, S. K., & Puranik, V. D. (2011). Natural radionuclides from coal fired thermal power plants–estimation of atmospheric release and inhalation risk. Radioprotection, 46(6), S173–S179. https://doi.org/10.1051/radiopro/20116982s

    Article  Google Scholar 

  • Papastefanou, C. (1996). Radiological impact from atmospheric releases of 226Ra from coal - fired power plants. Journal of Environmental Radioactivity, 32, 105–114.

    Article  CAS  Google Scholar 

  • Paschoa, A. S., & Steinhausler, F. (2010). TENR - Technologically Enhanced Natural Radiation (Radioactivity in the Environment). Elsevier, pp 244.

  • Qureshi, A. A., Tariq, S., Din, K. U., Manzoor, S., Calligaris, C., & Waheed, A. (2014). Evaluation of excessive lifetime cancer risk due to natural radioactivity in the river, sediments of Northern Pakistan. J Radiat. Res. Appl. Sc., 7(4), 438–447. https://doi.org/10.1016/j.jrras.2014.07.008

    Article  Google Scholar 

  • Sahu, S. K., Tiwari, M., Bhangare, R. C., & Pandit, G. G. (2014). Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. Journal of Environmental Radioactivity, 138, 421–426. https://doi.org/10.1016/j.jenvrad.2014.04.010

    Article  CAS  Google Scholar 

  • Senior, C. L., Helble, J. J., & Sarofim, A. F. (2000). Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technology, 65–66, 263–288. https://doi.org/10.1016/S0378-3820(00)00082-5

    Article  Google Scholar 

  • TCVN. (2015). TCVN 8910:2015 – Commercial Coal – Specification. National Standards, Ha Noi, Viet Nam.

  • Thien, B. N., Ba, V. N., Vy, N. T. T., & Loan, T. T. H. (2020). Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city. Vietnam. Chemosphere, 259, 127432. https://doi.org/10.1016/j.chemosphere.2020.127432

    Article  CAS  Google Scholar 

  • UNSCEAR. (1982). Ionizing radiation: Sources and biological effects Report. United Nations Scientific Committee on the Effects of Atomic Radiation, US, New York.

  • UNSCEAR. (1988). Sources, effects and risks of ionizing radiation (pp. 81–84). United Nations.

    Google Scholar 

  • UNSCEAR. (2000). Sources and effects of ionizing radiation. United Nations, Annex B, New York, 84–141.

  • UNSCEAR. (2008). Sources and effects of ionizing radiation. Report to General Assembly, Annex B, United Nations, New York.

  • Uslu, I., & Gökmeşe, F. (2010). Coal an impure fuel source: Radiation effects of coal-fired power plants in Turkey. Hacettepe J. Biol. & Chem., 38(4), 259–268.

    Google Scholar 

  • Voncken, J. H. L. (2020). The origin and classification of coal. In: Geology of coal deposits of South Limburg, The Netherlands. SpringerBriefs in Earth Sciences. Springer, Cham.

  • Xinwei, L., Xiaodan, J., & Fengling, W. (2006). Natural radioactivity of coal and its byproducts in the Baoji coal-fired power plant. China. Curr. Sci., 91(11), 1508–1511.

    Google Scholar 

Download references

Funding

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number VL2020-18–01. We would like to express our sincere thanks to Prof. Dr. Sc. Nguyen Ngoc Tran, the Director Board of EVN Group, the Director Boards of Vinh Tan 2, and Duyen Hai 3 CFPPs for helping in our sampling and doing in situ measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loan Thi Hong Truong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do Le, L., Vu, B.N., Huynh, H.T.Y. et al. Radiation exposure for the population living around the coal-fired power plant complexes in Vietnam. Environ Monit Assess 194, 561 (2022). https://doi.org/10.1007/s10661-022-10224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10224-3

Keywords

Navigation