Skip to main content

Advertisement

Log in

Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea (summer monsoon)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 µatm; high CO2, 843, 1138 µatm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate + nitrite levels were quite low (< 2 µM). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19′HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used in this manuscript are shown in the form of figures and tables.

References

  • Ahmed, A., Kurian, S., Gauns, M., Chndrasekhararao, A. V., Mulla, A., Naik, B., Naik, H., & Naqvi, S. W. A. (2016). Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Continental Shelf Research, 119, 30–39. https://doi.org/10.1016/j.csr.2016.03.005

    Article  Google Scholar 

  • Algueró-Muñiz, M., Horn, H. G., Alvarez-Fernandez, S., Spisla, C., Aberle, N., Bach, L. T., Guan, W., Achterberg, E. P., Riebesell, U., & Boersma, M. (2019). Analyzing the impacts of elevated-CO2 levels on the development of a subtropical zooplankton community during oligotrophic conditions and simulated upwelling. Frontiers in Marine Science, 6, 61. https://doi.org/10.3389/fmars.2019.00061

    Article  Google Scholar 

  • Andruleit, H., Stäger, S., Rogalla, U., & Čepek, P. (2003). Living coccolithophores in the northern Arabian Sea: Ecological tolerances and environmental control. Marine Micropaleontology, 49(1–2), 157–181. https://doi.org/10.1016/S0377-8398(03)00049-5

    Article  Google Scholar 

  • Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., & Schulz, K. G. (2015). A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress Oceanogr, 135, 125–138. https://doi.org/10.1016/j.pocean.2015.04.012

    Article  Google Scholar 

  • Bach, L. T., Hernández-Hernández, N., Taucher, J., Spisla, C., Sforna, C., Riebesell, U., & Arístegui, J. (2019). Effects of elevated CO2 on a natural diatom community in the subtropical NE Atlantic. Frontiers in Marine Science, 6, 75. https://doi.org/10.3389/fmars.2019.00075

    Article  Google Scholar 

  • Banse, K. (1959). On upwelling and bottom-trawling off the southwest coast of India. Journal of the Marine Biological Association of India, 1, 33–49.

    Google Scholar 

  • Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J., & Riebesell, U. (2007). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer TrichodesmiumGlobal Biogeochemical Cycles, 21(2). https://doi.org/10.1029/2006GB002898

  • Biswas, H., Alexander, C. R. O. S., Yadav, K., Ramana, V. V., Prasad, V. R., Acharyya, T., & Babu, P. R. (2011). The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology, 407, 284–293. https://doi.org/10.1016/j.jembe.2011.06.027

    Article  Google Scholar 

  • Biswas, H., Gadi, S. D., Ramana, V. V., Bharathi, M. D., Priyan, R. K., Manjari, D. T., & Kumar, M. D. (2012). Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal. Biodiversity and Conservation, 21, 1309–1326. https://doi.org/10.1007/s10531-011-0209-7

    Article  Google Scholar 

  • Biswas, H., Reddy, N. P. C., Rao, V. S., Bharathi, M. D., & Subbaiah, C. V. (2015). Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India). Environmental Impact Assessment Review, 55, 169–181. https://doi.org/10.1016/j.eiar.2015.08.005

    Article  Google Scholar 

  • Biswas, H., Shaik, A. U. R., Bandyopadhyay, D., & Chowdhury, N. (2017). CO2 induced growth response in a diatom dominated phytoplankton community from SW Bay of Bengal coastal water. Estuarine, Coastal and Shelf Science, 198, 29–42. https://doi.org/10.1016/j.ecss.2017.07.022

    Article  CAS  Google Scholar 

  • Boelen, P., Van De Poll, W. H., Van Der Strate, H. J., Neven, I. A., Beardall, J., & Buma, A. G. (2011). Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis. Journal of Experimental Marine Biology and Ecology, 406, 38–45. https://doi.org/10.1016/j.jembe.2011.06.012

    Article  Google Scholar 

  • Boyd, P. W., & Doney, S. C. (2002). Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters, 29, 53–61. https://doi.org/10.1029/2001GL014130

    Article  Google Scholar 

  • Bradshaw, A. L., & Brewer, P. G. (1988). High precision measurements of alkalinity and total carbon dioxide in seawater by potentiometric titration—1. Presence of unknown protolyte (s)? Marine Chemistry, 23, 69–86.

    Article  CAS  Google Scholar 

  • Brewer, P. G. (1997). Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual.” Geophysical Research Letters, 24(11), 1367–1369.

    Article  CAS  Google Scholar 

  • Burkhardt, S., Riebesell, U., & Zondervan, I. (1999). Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica Et Cosmochimica Acta, 63, 3729–3741. https://doi.org/10.1016/S0016-7037(99)00217-3

    Article  CAS  Google Scholar 

  • Chowdhury, M., Biswas, H., Sharma, D., Silori, S., & Winter, A. (2022). Distribution of extant coccolithophores from the northwest continental shelf of India during the summer monsoon. Phycologia, 1–15.

  • Desikachary, T. V. (1987). Atlas of diatoms. Madras Science Foundation, Chennai, India.

  • Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research, Part i: Oceanographic Research Papers, 34, 1733–1743. https://doi.org/10.1016/0198-0149(87)90021-5

    Article  CAS  Google Scholar 

  • Domingues, R. B., Barreto, M., Brotas, V., Galvão, H. M., & Barbosa, A. B. (2021). Short-term effects of winter warming and acidification on phytoplankton growth and mortality: More losers than winners in a temperate coastal lagoon. Hydrobiologia, 848, 4763–4785. https://doi.org/10.1007/s10750-021-04672-0

    Article  CAS  Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., & Berman-Frank, I. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. Nature Clinical Practice Endocrinology & Metabolism, 5, 1002–1006. https://doi.org/10.1038/nclimate2722

    Article  CAS  Google Scholar 

  • Egge, J. K., & Aksnes, D. L. (1992). Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series. Oldendorf, 83, 281–289.

    Article  CAS  Google Scholar 

  • Eggers, S. L., Lewandowska, A. M., & Barcelos e Ramos J, Blanco-Ameijeiras S, Gallo F, Matthiessen B,. (2014). Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology, 20, 713–723. https://doi.org/10.1111/gcb.12421

    Article  Google Scholar 

  • Falkowski, P. G., Raven, J. A. (2007). An introduction to photosynthesis in aquatic systems. Aquatic Photosynthesis, 1–44.

  • Feng, Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y., DiTullio, G. R., Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J., & Nemcek, N. (2009). Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology Progress Series, 388, 13–25. https://doi.org/10.3354/meps08133

    Article  CAS  Google Scholar 

  • Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., & Raven, J. A. (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research, 32, 119–137. https://doi.org/10.1093/plankt/fbp098

    Article  CAS  Google Scholar 

  • Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data, 12, 3269–3340. https://doi.org/10.5194/essd-12-3269-2020.

    Article  Google Scholar 

  • Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). Effects of Increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria) 1. Journal of Phycology, 43(3), 485–496. https://doi.org/10.1111/j.1529-8817.2007.00355.x

    Article  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (Eds.). (2009). Methods of seawater analysis. John Wiley & Sons.

  • Habeebrehman, H., Prabhakaran, M. P., Jacob, J., Sabu, P., Jayalakshmi, K. J., Achuthankutty, C. T., & Revichandran, C. (2008). Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea. Journal of Marine Systems, 74, 545–560. https://doi.org/10.1016/j.jmarsys.2008.04.002

    Article  Google Scholar 

  • Hopkinson, B. M., Dupont, C. L., Allen, A. E., & Morel, F. M. (2011). Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences, 108, 3830–3837. https://doi.org/10.1073/pnas.1018062108

    Article  Google Scholar 

  • Ito, H., & Tanaka, A. (2011). Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. PNAS, 108(44), 18014–18019. https://doi.org/10.1073/pnas.1107590108

  • Jacobson, D. M., & Anderson, D. M. (1986). Thecate heterophic dinoflagellates: Feeding behavior and mechanisms 1. Journal of Phycology, 22, 249–258.

    Article  Google Scholar 

  • Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH and buffer capacity: Past, present and future. Science and Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-55039-4

    Article  CAS  Google Scholar 

  • Kamatani, A., & Riley, J. P. (1979). Rate of dissolution of diatom silica walls in seawater. Marine Biology, 55(1), 29–35.

    Article  CAS  Google Scholar 

  • Kim, J. M., Lee, K., Shin, K., Yang, E. J., Engel, A., Karl, D. M., & Kim, H. C. (2011). Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions. Geophysical Research Letters, 38(8). https://doi.org/10.1029/2011GL047346

  • Krause, J. W., Schulz, I. K., Rowe, K. A., Dobbins, W., Winding, M. H., Sejr, M. K., & Agustí, S. (2019). Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. Science and Reports, 9, 1–11. https://doi.org/10.1038/s41598-019-44587-4

    Article  CAS  Google Scholar 

  • Lohbeck, K. T., Riebesell, U., & Reusch, T. B. (2012). Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5(5), 346–351. https://doi.org/10.1038/ngeo1441

    Article  CAS  Google Scholar 

  • Lomas, M. W., Hopkinson, B. M., Ryan, J. L. D., Shi, D. L., Xu, Y., & Morel, F. M. M. (2012). Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquatic Microbial Ecology, 66, 211–222. https://doi.org/10.3354/ame01576

    Article  Google Scholar 

  • Lønborg, C., Carreira, C., Jickells, T., & Álvarez-Salgado, X. A. (2020). Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Frontiers in Marine Science, 7, 466. https://doi.org/10.3389/fmars.2020.00466

    Article  Google Scholar 

  • Madhupratap, M., Sawant, S., & Gauns, M. (2000). A first report on a bloom of the marine prymnesiophycean, Phaeocystis globosa from the Arabian Sea. Oceanologica Acta, 23, 83–90. https://doi.org/10.1016/S0399-1784(00)00109-2

    Article  Google Scholar 

  • Malerba, M. E., Marshall, D. J., Palacios, M. M., Raven, J. A., & Beardall, J. (2021). Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. New Phytologist, 229(5), 2647–2659.

    Article  CAS  Google Scholar 

  • Marañón, E. (2015). Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Science, 241–264. https://doi.org/10.1146/annurev-marine-010814-015955

  • McNair, H. M., Brzezinski, M. A., & Krause, J. W. (2018). Diatom populations in an upwelling environment decrease silica content to avoid growth limitation. Environmental Microbiology, 20, 4184–4193. https://doi.org/10.1111/1462-2920.14431

    Article  CAS  Google Scholar 

  • Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897–907. https://doi.org/10.4319/lo.1973.18.6.0897

    Article  CAS  Google Scholar 

  • Moolna, A., & Rickaby, R. E. M. (2012). Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: Response to a recreated high-CO2 geological past. Geobiology, 10(1), 72–81. https://doi.org/10.1111/j.1472-4669.2011.00308.x

    Article  CAS  Google Scholar 

  • Osma, N., Latorre-Melín, L., Jacob, B., Contreras, P. Y., von Dassow, P., & Vargas, C. A. (2020). Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Frontiers in Marine Science, 7, 323. https://doi.org/10.3389/fmars.2020.00323

    Article  Google Scholar 

  • Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. ORNL/CDIAC-IOS.

  • Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society.

  • Raven, J. A., Giordano, M., Beardall, J., & Maberly, S. C. (2011). Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research, 109, 281–296. https://doi.org/10.1007/s11120-011-9632-6

    Article  CAS  Google Scholar 

  • Reinfelder, J. R. (2011). Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science, 3, 291–315. https://doi.org/10.1146/annurev-marine-120709-142720.

    Article  Google Scholar 

  • Rost, B., Riebesell, U., Burkhardt, S., & Sültemeyer, D. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48, 55–67. https://doi.org/10.4319/lo.2003.48.1.0055

    Article  Google Scholar 

  • Rost, B., Zondervan, I., & Wolf-Gladrow, D. (2008). Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions. Marine Ecology Progress Series, 373, 227–237. https://doi.org/10.3354/meps07776

    Article  CAS  Google Scholar 

  • Roubeix, V., Becquevort, S., & Lancelot, C. (2008). Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems. Biogeochemistry, 88(1), 47–62. https://doi.org/10.1007/s10533-008-9193-8

    Article  CAS  Google Scholar 

  • Sarma, V. V. S. S. (2003). Monthly variability in surface pCO2 and net air‐sea CO2 flux in the Arabian Sea. Journal of Geophysical Research, 108(C8). https://doi.org/10.1029/2001JC001062

  • Shaik, A. U. R., Biswas, H., & Pal, S. (2017). Increased CO2 availability promotes growth of a tropical coastal diatom assemblage (Goa coast, Arabian Sea, India). Diatom Research, 32, 325–339. https://doi.org/10.1080/0269249X.2017.1379443

    Article  Google Scholar 

  • Sharma, D., Biswas, H., & Bandyopadhyay, D. (2022). Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea). Environmental Science and Pollution Research, 1–18. https://doi.org/10.1007/s11356-021-17141-x

  • Sharma, D., Biswas, H., Silori, S., Bandyopadhyay, D., Shaik, A. U. R., Cardinal, D., Mandeng-Yogo, M., & Ray, D. (2020). Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system. Marine Environment Research, 155, 104880. https://doi.org/10.1016/j.marenvres.2020.104880

    Article  CAS  Google Scholar 

  • Sharp, J. H. (1974). Improved analysis for “particulate” organic carbon and nitrogen from seawater 1. Limnology and Oceanography, 19, 984–989.

    Article  CAS  Google Scholar 

  • Silori, S., Sharma, D., Chowdhury, M., Biswas, H., Bandyopadhyay, D., Shaik, A. U. R., & Narvekar, J. (2021). Contrasting phytoplankton and biogeochemical functioning in the eastern Arabian Sea shelf waters recorded by carbon isotopes (Summer monsoon). Marine Chemistry, 232, 103962. https://doi.org/10.1016/j.marchem.2021.103962

    Article  CAS  Google Scholar 

  • Taucher, J., Arístegui, J., Bach, L. T., Guan, W., Montero, M. F., Nauendorf, A., Achterberg, E. P., & Riebesell, U. (2018). Response of subtropical phytoplankton communities to ocean acidification under oligotrophic conditions and during nutrient fertilization. Frontiers in Marine Science, 5, 330.

    Article  Google Scholar 

  • Taucher, J., Jones, J., James, A., Brzezinski, M. A., Carlson, C. A., Riebesell, U., & Passow, U. (2015). Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus. Limnology and Oceanography, 60, 901–919. https://doi.org/10.1002/lno.10063

    Article  Google Scholar 

  • Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. Hort Science, 18, 818–822.

    Google Scholar 

  • Tomas, C. R. (Ed.) .(1997). Identifying marine phytoplankton. Elsevier.

  • Tong, S., Gao, K., & Hutchins, D. A. (2018). Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Global Change Biology, 24(7), 3055–3064. https://doi.org/10.1111/gcb.14065

    Article  Google Scholar 

  • Tortell, P. D., DiTullio, G. R., Sigman, D. M., & Morel, F. M. (2002). CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series, 236, 37–43. https://doi.org/10.3354/meps236037

    Article  Google Scholar 

  • Tortell. P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., & DiTullio, G. R. (2008). CO2 sensitivity of Southern Ocean phytoplankton. Geophysical Research Letters, 35(4). https://doi.org/10.1029/2007GL032583

  • Trimborn, S., Brenneis, T., Sweet, E., & Rost, B. (2013). Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnology and Oceanography, 58(3), 997–1007. https://doi.org/10.4319/lo.2013.58.3.0997

    Article  CAS  Google Scholar 

  • Uitz, J., Claustre, H., Morel, A., & Hooker, S. B. (2006). Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research Oceans, 111(C8). https://doi.org/10.1029/2005JC003207

  • Valsala, V., Sreeush, M. G., Anju, M., Sreenivas, P., Tiwari, Y. K., Chakraborty, K., & Sijikumar, S. (2021). An observing system simulation experiment for Indian Ocean surface pCO2 measurements. Progress in Oceanography, 194, 102570. https://doi.org/10.1016/j.pocean.2021.102570

    Article  Google Scholar 

  • Van Heukelem, L., & Thomas, C. S. (2001). Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 910, 31–49. https://doi.org/10.1016/S0378-4347(00)00603-4

    Article  Google Scholar 

  • Vargas, C. A., Lagos, N. A., Lardies, M. A., Duarte, C., Manríquez, P. H., Aguilera, V. M., & Dupont, S. (2017). Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nature Ecology & Evolution, 1(4), 1–7. https://doi.org/10.1038/s41559-017-0084

    Article  CAS  Google Scholar 

  • Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., & Marty, J. C. (2001). Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. Journal of Geophysical Research Oceans, 106, 19939–19956. https://doi.org/10.1029/1999JC000308

  • Wolf, K. K., Hoppe, C. J., & Rost, B. (2018). Resilience by diversity: Large intraspecific differences in climate change responses of an Arctic diatom. Limnology and Oceanography, 63, 397–411. https://doi.org/10.1002/lno.10639

    Article  Google Scholar 

  • Wolf, K. K., Romanelli, E., Rost, B., John, U., Collins, S., Weigand, H., & Hoppe, C. J. (2019). Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Global Change Biology, 25, 2869–2884. https://doi.org/10.1111/gcb.14675

    Article  Google Scholar 

  • Young, J. N., Kranz, S. A., Goldman, J. A., Tortell, P. D., & Morel, F. M. (2015). Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Marine Ecology Progress Series, 532, 13–28. https://doi.org/10.3354/meps11336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Bharathidasan University staff for their technical help concerning her Ph.D. registration. We acknowledge the generous efforts made by the entire crew members, the captain of SSD-40, the ship cell of CSIR-NIO, and other colleagues during the experiment in Summer monsoon. Part of this work was conducted under the project MLP-1802. The active support from the director CSIR-NIO is gratefully acknowledged. We are also thankful for the analytical help from IRD, Paris provided by Prof Damien Cardinal (LOCEAN, Sorbonne University, Paris, France) for analyzing POC, PON, and δ13CPOC samples, and to Mr. M. Mandeng-Y, for his technical support during the analysis. For HPLC analyses, the central analytical facility is used at the CSIR-NIO, and we are thankful to Ms. Teja Naik for her technical support. The technical help of Mr. Mintu Chowdhury during HPLC analysis is also acknowledged. NIO contribution number is 6939. We gratefully acknowledge the constructive comments and suggestions of the anonymous reviewers.

Funding

The first author is thankful to the DST-Inspire fellowship program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haimanti Biswas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Biswas, H., Silori, S. et al. Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea (summer monsoon). Environ Monit Assess 194, 581 (2022). https://doi.org/10.1007/s10661-022-10214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10214-5

Keywords

Navigation