Skip to main content

Estimating remobilization of potentially toxic elements in soil and road dust of an industrialized urban environment

Abstract

The mobility of potentially toxic elements (PTEs) is of paramount concern in urban settings, particularly those affected by industrial activities. Here, contaminated soils and road dusts of the medium-size, industrialized city of Volos, Central Greece, were subjected to single-step extractions (0.43 M HNO3 and 0.5 M HCl) and the modified BCR sequential extraction procedure. This approach will allow for a better understanding of the geochemical phase partitioning of PTEs and associated risks in urban environmental matrices. Based on single extraction procedures, Pb and Zn exhibited the highest remobilization potential. Of the non-residual phases, the reducible was the most important for Pb, and the oxidizable for Cu and Zn in both media. On the other hand, mobility of Ni, Cr, and Fe was low, as inferred by their dominance into the residual fraction. Interestingly, we found a significant increase of the residual fraction in the road dust samples compared to soils. Carbonate content and organic matter controlled the extractabilities of PTEs in the soil samples. By contrast, for the road dust, magnetic susceptibility exerted the main control on the geochemical partitioning of PTEs. We suggest that anthropogenic particles emitted by heavy industries reside in the residual fraction of the SEP, raising concerns about the assessment of this fraction in terms of origin of PTEs and potential environmental risks. Conclusively, the application of sequential extraction procedures should be complemented with source identification of PTEs with the aim to better estimate the remobilization of PHEs in soil and road dust influenced by industrial emissions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability and material

All data generated during this study are included in the article.

References

  • Acosta, J. A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J. M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere, 134, 328–337. https://doi.org/10.1016/j.chemosphere.2015.04.038

    Article  CAS  Google Scholar 

  • Aidona, E., Grison, H., Petrovsky, E., Kazakis, N., Papadopoulou, L., & Voudouris, K. (2016). Magnetic characteristics and trace elements concentration in soils from Anthemountas River basin (North Greece): Discrimination of different sources of magnetic enhancement. Environmental Earth Sciences, 75, 1375. https://doi.org/10.1007/s12665-016-6114-3

    Article  CAS  Google Scholar 

  • Argyraki, A., Kelepertzis, E., Botsou, F., Paraskevopoulou, V., Katsikis, I., & Trigoni, M. (2018). Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration, 187, 201–213. https://doi.org/10.1016/j.gexplo.2017.09.004

    Article  CAS  Google Scholar 

  • Bäckström, M., Karlsson, S., & Allard, B. (2004). Metal leachability and anthropogenic signal in roadside soils estimated from sequential extraction and stable lead isotopes. Environmental Monitoring and Assessment, 90, 135–160. https://doi.org/10.1023/B:EMAS.0000003572.40515.31

    Article  Google Scholar 

  • Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? The Analyst, 133, 25–46. https://doi.org/10.1039/B711896A

    Article  CAS  Google Scholar 

  • Blundell, A., Hannam, J. A., Dearing, J. A., & Boyle, J. F. (2009). Detecting atmospheric pollution in surface soils using magnetic measurements: A reappraisal using an England and Wales database. Environmental Pollution, 157, 2878–2890. https://doi.org/10.1016/j.envpol.2009.02.031

    Article  CAS  Google Scholar 

  • Botsou, F., Moutafis, I., Dalaina, S., & Kelepertzis, E. (2020). Settled bus dust as a proxy of traffic-related emissions and health implications of exposures to potentially harmful elements. Atmospheric Pollution Research, 11, 1776–1784. https://doi.org/10.1016/j.apr.2020.07.010

    Article  CAS  Google Scholar 

  • Botsou, F., Sungur, A., Kelepertzis, E., & Soylak, M. (2016). Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety, 132, 101–110. https://doi.org/10.1016/j.ecoenv.2016.05.032

    Article  CAS  Google Scholar 

  • Bourliva, A., Papadopoulou, L., & Aidona, E. (2016). Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Science of the Total Environment, 553, 380–391. https://doi.org/10.1016/j.scitotenv.2016.02.149

    Article  CAS  Google Scholar 

  • BS ISO 17586:2016. (n.d). Soil quality. Extraction of trace elements using dilute nitric acid. ISBN: 978 0 580 79518 3.

  • Cuvier, A., Leleyter, L., Probst, A., Probst, J. L., Prunier, J., Pourcelot, L., Le Roux, G., Lemoine, M., Reinert, M., & Baraud, F. (2021). Why comparison between different chemical extraction procedures is necessary to better assess the metals availability in sediments. Journal of Geochemical Epxloration, 225, 106762. https://doi.org/10.1016/j.gexplo.2021.106762

    Article  CAS  Google Scholar 

  • Das, S., Mondal, S., Buragohain, D., & Dasgupta, U. (2017). Magnetic susceptibility of road dust from Kolkata - in relationship to road traffic. International Journal of Applied and Natural Sciences, 6, 65–78.

    Google Scholar 

  • Davidson, C. M. (2013). Methods for the determination of heavy metals and metalloids in soils. In B. J. Alloway & J. T. Trevors (Eds.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (pp. 97–140). Springer.

    Chapter  Google Scholar 

  • Dearing, J. (1999). Environmental magnetic susceptibility. Using the Bartington MS2 System (Second Edition) (p. 54). Chi Publishing.

    Google Scholar 

  • Dong, S., Zhang, S., Wang, L., Ma, G., Lu, X., Li, X. (2020). Concentrations, speciation, and bioavailability of heavy metals in street dust as well as relationships with physocochemical properties: A case study of Jinan city in East China. Environmental Science and Pollution Research, 27, 35724–35737. https://doi.org/10.1007/s11356-020-09761-6

  • Entwistle, J., Bramwell, L., Wragg, J., Cave, M., Hamilton, E., Gardner, A., Dean, J. R. (2020). Investigating the geochemical controls on Pb bioaccessibility in urban agricultural soils to inform sustainable site management. Geosciences, 10. https://doi.org/10.3390/geosciences10100398

  • Gabarrón, M., Zornoza, R., Martίnez-Martίnez, S., Muñoz, V. A., Faz, A., Acosta, J. A. (2019). Effect of land use and soil properties in the feasibility of two sequential extraction procesures for metals fractionation. Chemosphere, 218, 266–272. https://doi.org/10.1016/j.chemosphere.2018.11.114

  • Gee, G. W., Or, D. (2002). 2.4 Particle-size analysis. Methods soil anal., SSSA Book Series. https://doi.org/10.2136/sssabookser5.4.c12

  • Gonet, T., & Maher, B. A. (2019). Airborne, vehicle-derived fe-bearing nanoparticles in the urban environment: A review. Environmental Science and Technology, 53, 9970–9991. https://doi.org/10.1021/acs.est.9b01505

    Article  CAS  Google Scholar 

  • Gonet, T., Maher, B. A., & Kukutschová, J. (2021). Source apportionment of magnetite particles in roadside airborne particulate matter. Science of the Total Environment, 752, 141828. https://doi.org/10.1016/j.scitotenv.2020.141828

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety, 138, 231–241. https://doi.org/10.1016/j.ecoenv.2017.01.008

    Article  CAS  Google Scholar 

  • Górka-Kostrubiec, B., Werner, T., DytÅ‚ow, S., Szczepaniak-Wnuk, I., JeleÅ„ska, M., & Hanc-Kuczkowska, A. (2019). Detection of metallic iron in urban dust by using high-temperature measurements supplemented with microscopic observations and Mössbauer spectra. Journal of Applied Geophysics, 166, 89–102. https://doi.org/10.1016/j.jappgeo.2019.04.022

    Article  Google Scholar 

  • Groenenberg, J. E., Römkens, P. F. A. M., Zomeren, A. V., Rodrigues, S. M., & Comans, R. N. J. (2017). Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soil. Environmental Science and Technology, 51, 2246–2253. https://doi.org/10.1021/acs.est.6b05151

    Article  CAS  Google Scholar 

  • Hofman, J., Castanheiro, A., Nuyts, G., Joosen, S., Spassov, S., Blust, R., De Wael, K., Lenaerts, S., & Samson, R. (2020). Impact of urban street canyon architecture on local atmospheric pollutant levels and magneto-chemical PM10 composition: An experimental study in Antwerp. Belgium. Science of the Total Environment, 712, 135534. https://doi.org/10.1016/j.scitotenv.2019.135534

    Article  CAS  Google Scholar 

  • Howard, J. L., Dubay, B. R., McElmurry, S. P., Clemence, J., & Daniels, W. L. (2013). Comparison of sequential extraction and bioaccessibility analyses of lead using urban soils and reference materials. Water Air and Soil Pollution, 224, 1678. https://doi.org/10.1007/s11270-013-1678-y

    Article  CAS  Google Scholar 

  • Hu, Z., Qi, L. (2014). 15.5 - Sample digestion methods, in: Holland, H.D., Turekian, K.K.B.T.-T. on G. Second E. (Eds.), . Elsevier, Oxford, pp. 87–109. https://doi.org/10.1016/B978-0-08-095975-7.01406-6

  • Jayarathne, A., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2018). Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Science of the Total Environment, 635, 1609–1619. https://doi.org/10.1016/j.scitotenv.2018.04.098

    Article  CAS  Google Scholar 

  • Jordanova, N., Jordanova, D., Tcherkezova, E., Georgieva, B., Ishlyamski, D. (2021). Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. Science of the Total Environment, 792. https://doi.org/10.2016/j.scitotenv.2021.148402

  • Kashem, M. A., Singh, B. R., Kondo, T., Imamul Huq, S. M., & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. International Journal of Environmental Science and Technology, 4, 169–176. https://doi.org/10.1007/BF03326270

    Article  CAS  Google Scholar 

  • Katsikatsos, G., Mylonakis, J., Vidakis, M., Hecht, J., Papadheas, G., Dimou, E., Papazeti, E., Skortsi-Koroneou, V., Hadhicostanti-Tsalachouri, I., Karamicahlou-Kavali, A. (1978). Geological Map of Greece, Volos Sheet; Institute of Geology and Mineral Exploration of Greece: Athens, Greece.

  • Kelepertzis, E., & Argyraki, A. (2015). Geochemical associations for evaluating the availability of potentially harmful elements in urban soils: Lessons learnt from Athens, Greece. Applied Geochemistry, 59, 63–73. https://doi.org/10.1016/j.apgeochem.2015.03.019

    Article  CAS  Google Scholar 

  • Kelepertzis, E., Argyraki, A., Chrastný, V., Botsou, F., Skordas, K., Komárek, M., & Fouskas, A. (2020). Metal(loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece). Science of the Total Environment, 725, 138300. https://doi.org/10.1016/j.scitotenv.2020.138300

    Article  CAS  Google Scholar 

  • Kelepertzis, E., Chrastný, V., Botsou, F., Sigala, E., Kypritidou, Z., Komárek, M., Skordas, K., & Argyraki, A. (2021). Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Science of the Total Environment, 771, 144827. https://doi.org/10.1016/j.scitotenv.2020.144827

    Article  CAS  Google Scholar 

  • Kelepertzis, E., Paraskevopoulou, V., Argyraki, A., Fligos, G., & Chalkiadaki, O. (2015). Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). Journal of Soils and Sediments, 15, 2265–2275. https://doi.org/10.1007/s11368-015-1163-x

    Article  CAS  Google Scholar 

  • Kelepertzis, E., & Stathopoulou, E. (2013). Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environmental Monitoring and Assessment, 185, 9603–9618. https://doi.org/10.1007/s10661-013-3277-1

    Article  CAS  Google Scholar 

  • Kördel, W., Bernhardt, C., Derz, K., Hund-Rinke, K., Harmsen, J., Peijnenburg, W., Comans, R., & Terytze, K. (2013). Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. Journal of Hazardous Materials, 261, 854–862. https://doi.org/10.1016/j.jhazmat.2013.05.017

    Article  CAS  Google Scholar 

  • Leleyter, L., Rousseau, C., Biree, L., & Baraud, F. (2012). Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. Journal of Geochemical Exploration, 116–117, 51–59. https://doi.org/10.1016/j.gexplo.2012.03.006

    Article  CAS  Google Scholar 

  • Liu, Q., Roberts, A. P., Larrasoaña, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., Oldfield, F. (2012). Environmental magnetism: Principles and applications. Reviews of Geophysics, 50. https://doi.org/10.1029/2012RG000393

  • Liu, E., Wang, X., Liu, H., et al. (2019). Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing), China. Ecotoxicology and Environmental Safety, 173, 381–392. https://doi.org/10.1016/j.ecoenv.2019.02.019

  • Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., & Madrid, L. (2007). Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environmental Pollution, 147, 713–722. https://doi.org/10.1016/j.envpol.2006.09.005

    Article  CAS  Google Scholar 

  • Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., Mann, D. M. A., Torres-Jardón, R., Calderon-Garciduenas, L. (2016). Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences, 113, 10797 LP – 10801. https://doi.org/10.1073/pnas.1605941113

  • Massas, I., Kalivas, D., Ehaliotis, C., & Gasparatos, D. (2013). Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environmental Monitoring and Assessment, 185, 6751–6766. https://doi.org/10.1007/s10661-013-3062-1

    Article  CAS  Google Scholar 

  • Nelson, D. W., Sommers, L. E. (2015). Total carbon, organic carbon, and organic matter, in: Methods of soil analysis, agronomy monographs. pp. 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

  • Ojha, G., Appel, E., Wawer, M., & Magiera, T. (2015). Monitoring-based discrimination of pathways of traffic-derived pollutants. Studia Geophysica Et Geodaetica, 59, 594–613. https://doi.org/10.1007/s11200-015-0522-9

    Article  Google Scholar 

  • Peijnenburg, W. J. G. M., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179. https://doi.org/10.1016/j.ecoenv.2007.02.008

    Article  CAS  Google Scholar 

  • Pérez, G., López-Mesas, M., & Valiente, M. (2008). Assessment of heavy metals remobilization by fractionation: Comparison of leaching tests applied to roadside sediments. Environmental Science and Technology, 42, 2309–2315. https://doi.org/10.1021/es0712975

    Article  CAS  Google Scholar 

  • Poulton, S. W., & Canfield, D. E. (2005). Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chemical Geology, 214, 209–221. https://doi.org/10.1016/j.chemgeo.2004.09.003

    Article  CAS  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez-Sanchez, J. F. (2010). Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Analytical Chimica Acta, 662, 128–136. https://doi.org/10.1016/j.aca.2010.01.006

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, F., & J., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61. https://doi.org/10.1039/A807854H

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Carvalho, L., Duarte, A. C., Pereira, E., Boim, A. G. F., Alleoni, L. R. F., & Römkens, P. F. A. M. (2018). Evaluation of a single extraction test to estimate the human oral bioaccessibility of potentially toxic elements in soils: Towards more robust risk assessment. Science of the Total Environment, 635, 188–202. https://doi.org/10.1016/j.scitotenv.2018.04.063

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., Pereira, E., & Römkens, P. F. A. M. (2013). Risk assessment for Cd, Cu, Pb and Zn in urban soils: Chemical availability as the central concept. Environmental Pollution, 183, 234–242. https://doi.org/10.1016/j.envpol.2012.10.006

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Henriques, B., da Silva, E. F., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I - The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81, 1549–1559. https://doi.org/10.1016/j.chemosphere.2010.07.026

    Article  CAS  Google Scholar 

  • Römkens, P. F., Guo, H. -Y., Chu, C. -L., Liu, T. -S., Chiang, C. -F., & Koopmans, G. F. (2009). Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 9, 216–228. https://doi.org/10.1007/s11368-009-0075-z

    Article  CAS  Google Scholar 

  • Scoullos, M., Botsou, F., & Zeri, C. (2014). Linking environmental magnetism to geochemical studies and management of trace metals. Examples from fluvial, estuarine and marine systems. Minerals, 4, 716–745. https://doi.org/10.3390/min4030716

    Article  CAS  Google Scholar 

  • Slotznick, S. P., Sperling, E. A., Tosca, N. J., Miller, A. J., Clayton, K. E., van Helmond, N. A. G. M., Slomp, C. P., Swanson-Hysell, N. L. (2020). Unraveling the mineralogical complexity of sediment iron speciation using sequential extractions. Geochemistry, Geophysics, Geosystems, 21, e2019GC008666. https://doi.org/10.1029/2019GC008666

  • Stone, M., & Marsalek, J. (1996). Trace metal composition and speciation in street sediment: Sault Ste. Marie. Canada. Water Air and Soil Pollution, 87, 149–169. https://doi.org/10.1007/BF00696834

    Article  CAS  Google Scholar 

  • Sungur, A., Soylak, M., Ozcan, H. (2014). Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability, 26(4). https://doi.org/10.3184/095422914X14147781158674

  • Sungur, A., Kavdir, Y., Özcan, H., İlay, R., & Soylak, M. (2021). Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. CATENA, 197, 104995. https://doi.org/10.1016/j.catena.2020.104995

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2002). Comparison between non-residual Al Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Applied Geochemistry, 17, 353–365. https://doi.org/10.1016/S0883-2927(01)00095-6

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Tack, F. M. G., Tolosa, C. A., & Verloo, M. G. (2001). Metal extraction from road sediment using different strength reagents: Impact on anthropogenic contaminant signals. Environmental Monitoring and Assessment, 71, 221–242. https://doi.org/10.1023/A:1011810319015

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Thompson, R., & Oldfield, F. (1986). Environmental magnetism. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-011-8036-8

    Article  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. R., Farago, M. E., & Thornton, I. (2003). The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225. https://doi.org/10.1016/S0269-7491(03)00058-7

    Article  CAS  Google Scholar 

  • TokalıoÄŸlu, Åž, & Kartal, Åž. (2005). Comparison of metal fractionation results obtained from single and BCR sequential extractions. Bulletin of Environmental Contamination and Toxicology, 75, 180–188. https://doi.org/10.1007/s00128-005-0736-6

    Article  CAS  Google Scholar 

  • Trojanowska, M., & Åšwietlik, R. (2020). Investigations of the chemical distribution of heavy metals in street dust and its impact on risk assessment for human health, case study of Radom (Poland). Human and Ecological Risk Assessment, 26, 1907–1926. https://doi.org/10.1080/10807039.2019.1619070

    Article  CAS  Google Scholar 

  • Vark, W., van Harmsen, J. (2015). Validation of ISO 17586 Soil quality: Extraction of trace elements using dilute nitric acid. Wageningen.

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16. https://doi.org/10.1016/j.envpol.2005.09.004

    Article  CAS  Google Scholar 

  • Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracer elements in road dust: The Venice mainland case of study. Journal of Geochemical Exploration, 166, 64–72. https://doi.org/10.1016/j.gexplo.2016.04.007

    Article  CAS  Google Scholar 

  • Zhang, C., Qiao, Q., Appel, E., & Huang, B. (2012). Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. Journal of Geochemical Exploration, 119–120, 60–75. https://doi.org/10.1016/j.gexplo.2012.06.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios Kelepertzis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 175 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botsou, F., Sungur, A., Kelepertzis, E. et al. Estimating remobilization of potentially toxic elements in soil and road dust of an industrialized urban environment. Environ Monit Assess 194, 526 (2022). https://doi.org/10.1007/s10661-022-10200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10200-x

Keywords

  • Sequential extractions
  • Trace metals
  • 0.43 M HNO3
  • 0.5 M HCl
  • Single extractions
  • Mobility