Skip to main content

Advertisement

Log in

Mangrove habitat suitability modeling: implications for multi-species plantation in an arid estuarine environment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In southern Iran, Sirik Estuary hosts the only two-species (Rhizophora mucronata and Avicennia marina) mangrove forest in the northwesternmost edge of the Indian Ocean mangrove distribution. Aiming to protect its forest reserve and compensate for inevitable losses, this study utilized habitat suitability modeling (the Maxent model) to identify suitable afforestation zones for each species, independently. The model was calibrated using the location of successfully established mangrove saplings as presence points and an array of physical and sediment physio-chemical layers as predictive variables. The model yielded an acceptable training AUC value of 0.963 for A.marina and 0.982 for R.mucronata. Moreover, physical variables had the highest contribution to predicting suitable habitats with different levels of importance for each species. The majority of A.marina suitable habitats were distributed along the in-estuary creek banks, creating mangrove-lined waterways while the R.mucronata suitable habitats were mostly distributed at the base of the main water creeks in the seaward reaches of the estuary. According to the Mann–Whitney U test results, there was a statistically significant spatial niche segregation (z = − 12.14, p = 0.000, sig ≤ .05, 2-tailed) between the species’ suitable habitats. The results showed that white mangroves tend to create mangrove-line structures along the water creeks penetrating inside the estuary while red mangroves mostly prefer the seaward side of the existing mangrove patches which are in danger of sea level rise.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018). An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry, 10(4), 116.

    Article  Google Scholar 

  • Adame, M. F., Brown, C. J., Bejarano, M., Herrera-Silveira, J. A., Ezcurra, P., Kauffman, J. B., & Birdsey, R. (2018). The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conservation Letters, 11(4), e12445.

    Article  Google Scholar 

  • Ahmed, N., Thompson, S., & Glaser, M. (2018). Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration. Ambio, 47(4), 441–452.

    CAS  Google Scholar 

  • Alshawafi, A., Analla, M., Aksissou, M., & Triplet, P. (2016). Physicochemical properties of water, soil, and morphological characteristics of mangrove forests in th e Island of Kamaran, Al Hodaidah, Yemen. Journal of Ecosystem & Ecography, 6, 211–217.

    Article  Google Scholar 

  • Barreto, M. B., Mónaco, S. L., Díaz, R., Barreto-Pittol, E., López, L., & Peralba, M. D. C. R. (2016). Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Organic Geochemistry, 100, 51–61.

    Article  CAS  Google Scholar 

  • Benzeev, R., Hutchinson, N., & Friess, D. A. (2017). Quantifying fisheries ecosystem services of mangroves and tropical artificial urban shorelines. Hydrobiologia, 803(1), 225–237.

    Article  Google Scholar 

  • Bosire, J. O., Dahdouh-Guebas, F., Kairo, J. G., Wartel, S., Kazungu, J., & Koedam, N. (2006). Success rates of recruited tree species and their contribution to the structural development of reforested mangrove stands. Marine Ecology Progress Series, 325, 85–91.

    Article  Google Scholar 

  • Chakraborty, S., Sahoo, S., Majumdar, D., Saha, S., & Roy, S. (2019). Future mangrove suitability assessment of Andaman to strengthen sustainable development. Journal of Cleaner Production, 234, 597–614.

    Article  Google Scholar 

  • Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P., & Romeiras, M. M. (2020). Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean & Coastal Management, 189, 105145.

    Article  Google Scholar 

  • Chow, J. (2018). Mangrove management for climate change adaptation and sustainable development in coastal zones. Journal of Sustainable Forestry, 37(2), 139–156.

    Article  Google Scholar 

  • Crase, B., Vesk, P. A., Liedloff, A., & Wintle, B. A. (2015). Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology, 21(8), 3005–3020.

    Article  Google Scholar 

  • Das, G. K. (2017). Sediment texture. In Tidal sedimentation of the Sunderban’s Thakuran Basin (pp. 53–81). Springer.

  • de Oliveira Júnior, A. J., de Souza, S. R. L., Dal Pai, E., Rodrigues, B. T., & de Souza, V. C. (2019). Aurora: Mobile application for analysis of spatial variability of thermal comfort indexes of animals and people, using IDW interpolation. Computers and Electronics in Agriculture, 157, 98–101.

    Article  Google Scholar 

  • de Souza Queiroz, L., Rossi, S., Calvet-Mir, L., Ruiz-Mallén, I., García-Betorz, S., Salvà-Prat, J., & de Andrade Meireles, A. J. (2017). Neglected ecosystem services: Highlighting the socio-cultural perception of mangroves in decision-making processes. Ecosystem Services, 26, 137–145.

    Article  Google Scholar 

  • Duke, N. C., Meynecke, J.-O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., & Field, C. D. (2007). A world without mangroves? Science, 317(5834), 41–42.

    Article  CAS  Google Scholar 

  • El-Shahat, A. (2017). Electrical resistivity and conductivity. BoD–Books on Demand.

  • Faridah-Hanum, I., Latiff, A., Hakeem, K. R., & Ozturk, M. (2013). Mangrove ecosystems of Asia: Status, challenges and management strategies. Springer.

    Google Scholar 

  • Feller, I. C., Friess, D. A., Krauss, K. W., & Lewis, R. R. (2017). The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia, 803(1), 1–12.

    Article  Google Scholar 

  • Feller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., Joye, S. B., & Ball, M. (2010). Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2, 395–417.

    Article  CAS  Google Scholar 

  • Ferraz, M. A., Choueri, R. B., Castro, Í. B., da Silva, C. S., & Gallucci, F. (2020). Influence of sediment organic carbon on toxicity depends on organism’s trophic ecology. Environmental Pollution, 261, 114134.

    Article  CAS  Google Scholar 

  • Ghayoumi, R., Ebrahimi, E., Hosseini, T. F., & Keshtkar, M. (2019). Predicting the effects of climate change on the distribution of mangrove forests in Iran using the maximum entropy model. Journal of RS and GIS for Natural Resources, 10(2), 35.

    Google Scholar 

  • Ghosh, A., Saha, S., Saraswati, P. K., Banerjee, S., & Burley, S. (2009). Intertidal foraminifera in the macro-tidal estuaries of the Gulf of Cambay: Implications for interpreting sea-level change in palaeo-estuaries. Marine and Petroleum Geology, 26(8), 1592–1599.

    Article  Google Scholar 

  • Gilman, E., Ellison, J., & Coleman, R. (2007). Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environmental Monitoring and Assessment, 124(1–3), 105–130.

    Article  Google Scholar 

  • Goldberg, L., Lagomasino, D., Thomas, N., & Fatoyinbo, T. (2020). Global declines in human‐driven mangrove loss. Global Change Biology.

  • Jia, M., Wang, Z., Zhang, Y., Mao, D., & Wang, C. (2018). Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. International Journal of Applied Earth Observation and Geoinformation, 73, 535–545.

    Article  Google Scholar 

  • Kaboli, M., Aliabadian, M., Tohidifar, M., Hashemi, A., Musavi, S. B., & Roselaar, C. C. (2016). Atlas of birds of Iran. Jahad Daneshgahi, Karazmi Branch.

  • Kalev, S. D., & Toor, G. S. (2018). The composition of soils and sediments. In Green Chemistry (pp. 339–357). Elsevier.

  • Kitaya, Y., Jintana, V., Piriyayotha, S., Jaijing, D., Yabuki, K., Izutani, S., & Iwasaki, M. (2002). Early growth of seven mangrove species planted at different elevations in a Thai estuary. Trees, 16(2–3), 150–154.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, K., & Xia, Q. (2018). A MaxEnt model for mineral prospectivity mapping. Natural Resources Research, 27(3), 299–313.

    Article  Google Scholar 

  • Malvarez, G. C., Cooper, J., & Jackson, D. (2001). Relationships between wave-induced currents and sediment grain size on a sandy tidal-flat. Journal of Sedimentary Research, 71(5), 705–712.

    Article  Google Scholar 

  • McKnight, P. E., & Najab, J. (2010). Mann‐Whitney U test. The Corsini Encyclopedia of Psychology, 1–1.

  • Mokhtari, M., Savari, A., Rezai, H., Kochanian, P., & Bitaab, A. (2008). Population ecology of fiddler crab, Uca lactea annulipes (Decapoda: Ocypodidae) in Sirik mangrove estuary, Iran. Estuarine, Coastal and Shelf Science, 76(2), 273–281.

    Article  Google Scholar 

  • Nandy, P., Das, S., Ghose, M., & Spooner-Hart, R. (2007). Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecology and Management, 15(4), 347–357.

    Article  CAS  Google Scholar 

  • Nguyen, T. P., Luom, T. T., & Parnell, K. E. (2017). Mangrove allocation for coastal protection and livelihood improvement in Kien Giang province, Vietnam: Constraints and recommendations. Land Use Policy, 63, 401–407.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.

    Article  Google Scholar 

  • Remya, K., Ramachandran, A., & Jayakumar, S. (2015). Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82, 184–188.

    Article  Google Scholar 

  • Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J., & Herrera-Silveira, J. (2020). Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE, 15(8), e0237701.

    Article  Google Scholar 

  • Sarker, S. K. (2017). Spatial and temporal patterns of mangrove abundance, diversity and functions in the Sundarbans University of Glasgow].

  • Vovides, A. G., Vogt, J., Kollert, A., Berger, U., Grueters, U., Peters, R., & López-Portillo, J. (2014). Morphological plasticity in mangrove trees: Salinity-related changes in the allometry of Avicennia germinans. Trees, 28(5), 1413–1425.

    Article  Google Scholar 

  • Wang, G., Wang, C., Guo, Z., Dai, L., Wu, Y., Liu, H., & Zhao, Y. (2020). Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane. Ecological Indicators, 116, 106472.

    Article  Google Scholar 

  • Ward, R. D., Friess, D. A., Day, R. H., & MacKenzie, R. A. (2016). Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosystem Health and Sustainability, 2(4), e01211.

    Article  Google Scholar 

  • Water, F. L. (2005). The Beaufort Wind Scale.

  • Yan, Z., Sun, X., Xu, Y., Zhang, Q., & Li, X. (2017). Accumulation and tolerance of mangroves to heavy metals: A review. Current Pollution Reports, 3(4), 302–317.

    Article  CAS  Google Scholar 

  • Zahed, M. A., Rouhani, F., Mohajeri, S., Bateni, F., & Mohajeri, L. (2010). An overview of Iranian mangrove ecosystems, northern part of the Persian Gulf and Oman Sea. Acta Ecologica Sinica, 30(4), 240–244.

    Article  Google Scholar 

Download references

Funding

This research was funded by Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Chamani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forouzannia, M., Chamani, A. Mangrove habitat suitability modeling: implications for multi-species plantation in an arid estuarine environment. Environ Monit Assess 194, 552 (2022). https://doi.org/10.1007/s10661-022-10194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10194-6

Keywords

Navigation