Skip to main content

Advertisement

Log in

Review on solid-state anaerobic digestion of lignocellulosic biomass and organic solid waste

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sustainable management of organic solid wastes especially the municipal solid waste (MSW) is essential for the realization of various sustainable development goals (SDGs). Resource recovery centric waste processing technologies generate valorizable products to meet the operations and maintenance (O&M) costs while reducing the GHG emissions. Solid-state anaerobic digestion (SSAD) of organic solid wastes is a biomethanation process performed at a relatively higher total solids (TS) loading in the range of 10–45%. SSAD overcomes various limitations posed by conventional anaerobic slurry digesters such as higher degradable matter per unit volume of the bioreactor resulting in a smaller footprint, low freshwater consumption, low wastewater generation, simple upstream and downstream processes, relatively lower operation, and maintenance costs. This review elucidates the recent developments and critical assessment of different aspects of SSAD, such as bioreactor design, operational strategy, process performances, mass balance, microbial ecology, applications, and mathematical models. A critical assessment revealed that the operating scale of SSAD varies between 1000 and 100,000 ts/year at organic loading rate (OLR) of 2–15 g volatile solids (VS)/L·day. The SSAD experiences process failures due to the formation of volatile fatty acids (VFAs), biogas pockets and clogging of the digestate outlet. Acclimatization of microbes accelerates the startup phase, steady-state performances, and the enrichment of syntrophic microbes with 10–50 times greater population of cellulolytic and xylanolytic microbes in thermophilic SSAD over mesophilic SSAD. Experimental limitations in the accurate determination of rate constants and the oversimplification of biochemical reactions result in an inaccurate prediction by the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD :

Anaerobic digestion

SSAD:

Solid-state anaerobic digestion

LAD:

Liquid anaerobic digesters

MSW:

Municipal solid waste

OFMSW:

Organic fraction of municipal solid waste

OLR:

Organic loading rate (g/L·day or kg/m3·day)

TS:

Total solids (% of wet weight)

VS:

Volatile solids (% of TS)

SRT:

Solid retention time (days)

VFA:

Volatile fatty acids

BMP:

Biological methane potential

S/I:

Substrate/inoculum ratio

References

  • Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J. P., Steyer, J. P., & Escudié, R. (2012). Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology, 111, 55–61. https://doi.org/10.1016/j.biortech.2012.01.174

  • Álvarez, C., Colón, J., Lópes, A. C., Fernández-Polanco, M., Benbelkacem, H., & Buffière, P. (2018). Hydrodynamics of high solids anaerobic reactor: Characterization of solid segregation and liquid mixing pattern in a pilot plant VALORGA facility under different reactor geometry. Waste Management, 76, 306–314. https://doi.org/10.1016/j.wasman.2018.02.053

    Article  CAS  Google Scholar 

  • Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al.(2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology : A Journal of the International Association on Water Pollution Research, 45(10), 65–73. https://doi.org/10.2166/wst.2002.0292

  • Batstone, D. J., Keller, J., Newell, R. B., & Newland, M. (2000). Modelling anaerobic degradation of complex wastewater. I: Model development. Bioresource Technology, 75(1), 67–74. https://doi.org/10.1016/S0960-8524(00)00018-3

  • Benbelkacem, H., Garcia-Bernet, D., Bollon, J., Loisel, D., Bayard, R., Steyer, J. P., et al. (2013). Liquid mixing and solid segregation in high-solid anaerobic digesters. Bioresource Technology, 147, 387–394. https://doi.org/10.1016/j.biortech.2013.08.027

    Article  CAS  Google Scholar 

  • Boe, K. (2006). Online monitoring and control of the biogas process. Environment. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.2757&rep=rep1&type=pdf

  • Bollon, J., Le-hyaric, R., Benbelkacem, H., & Buffiere, P. (2011). Development of a kinetic model for anaerobic dry digestion processes: Focus on acetate degradation and moisturecontent. Biochemical Engineering Journal, 56(3), 212–218. https://doi.org/10.1016/j.bej.2011.06.011

  • Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 124, 379–386. https://doi.org/10.1016/j.biortech.2012.08.051

    Article  CAS  Google Scholar 

  • Cao, Y., Fanning, S., Proos, S., Jordan, K., & Srikumar, S. (2017). A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in Microbiology, 8(SEP), 1–16. https://doi.org/10.3389/fmicb.2017.01829

  • Carlos-Pinedo, S., Wang, Z., & Eriksson, O. (2019). Methane yield from SS-AD: Experiences to learn by a full spectrum analysis at laboratory-, pilot- and full-scale. Biomass and Bioenergy, 127(January). https://doi.org/10.1016/j.biombioe.2019.105270

  • Čater, M., Fanedl, L., & Logar, R. M. (2013). Microbial community analyses in biogas reactors by molecular methods. Acta Chimica Slovenica, 60(2), 243–255.

    Google Scholar 

  • Chanakya, H. N., Borgaonkar, S., Meena, G., & Jagadish, K. S. (1993). Solid phase fermentation of untreated leaf biomass to biogas. Biomass and Bioenergy, 5(5), 369–377. https://doi.org/10.1016/0961-9534(93)90016-W

  • Chanakya, H. N., Ganguli, N. K., Anand, V., & Jagadish, K. S. (1995). Performance characteristics of a solid-phase biogas fermentor. Energy for Sustainable Development, 1(6), 43–46. https://doi.org/10.1016/S0973-0826(08)60100-3

    Article  Google Scholar 

  • Chanakya, H. N., & Malayil, S. (2012). Anaerobic digestion for bioenergy from agro-residues and other solid wastes—An overview of science, technology and sustainability. Journal of the Indian Institute of Science, 92(1), 111–144. http://journal.library.iisc.ernet.in/index.php/iisc/article/view/25

  • Chanakya, H. N., Ramachandra, T. V., Guruprasad, M., & Devi, V. (2007a). Micro-treatment options for components of organic fraction of MSW in residential areas. Environmental Monitoring and Assessment, 135(1–3), 129–139. https://doi.org/10.1007/s10661-007-9711-5

    Article  CAS  Google Scholar 

  • Chanakya, H. N., Ramachandra, T. V., & Vijayachamundeeswari, M. (2007b). Resource recovery potential from secondary components of segregated municipal solid wastes. Environmental Monitoring and Assessment, 135(1–3), 119–127. https://doi.org/10.1007/s10661-007-9712-4

    Article  CAS  Google Scholar 

  • Chanakya, H. N., Srikumar, K. G., Anand, V., Modak, J., & Jagadish, K. S. (1999). Fermentation properties of agro-residues, leaf biomass and urban market garbage in a solid phase biogas fermenter. Biomass and Bioenergy, 16(6), 417–429. https://doi.org/10.1016/S0961-9534(99)00015-X

    Article  Google Scholar 

  • Chanakya, H. N., Venkatsubramaniyam, R., & Modak, J. (1997). Fermentation and methanogenic characteristics of leafy biomass feedstocks in a solid phase biogas fermentor. Bioresource Technology, 62(3), 71–78. https://doi.org/10.1016/S0960-8524(97)00139-9

    Article  CAS  Google Scholar 

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  Google Scholar 

  • Cinar, S., Cinar, S. O., Wieczorek, N., Sohoo, I., & Kuchta, K. (2021). Integration of artificial intelligence into biogas plant operation. Processes, 9(1), 1–18. https://doi.org/10.3390/pr9010085

    Article  CAS  Google Scholar 

  • Croce, S., Wei, Q., D’Imporzano, G., Dong, R., & Adani, F. (2016). Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnology Advances, 34(8), 1289–1304. https://doi.org/10.1016/j.biotechadv.2016.09.004

    Article  CAS  Google Scholar 

  • Dai, X., Yan, H., Li, N., He, J., Ding, Y., Dai, L., & Dong, B. (2016). Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge. Scientific Reports, 6(March), 1–10. https://doi.org/10.1038/srep28193

    Article  CAS  Google Scholar 

  • Danovaro, R., Luna, G. M., Dell’Anno, A., & Pietrangeli, B. (2006). Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Applied and Environmental Microbiology, 72(9), 5982–5989. https://doi.org/10.1128/AEM.01361-06

    Article  CAS  Google Scholar 

  • De Laclos, H. F., Desbois, S., & Saint-Joly, C. (1997). Anaerobic digestion of municipal solid organic waste: Valorga full-scale plant in Tilburg, the Netherlands. Water Science and Technology, 36(6–7), 457–462. https://doi.org/10.1016/S0273-1223(97)00555-6

    Article  Google Scholar 

  • de Lima, H. Q., & Martins, G. (2014). Anaerobic digestion (AD) of municipal solid waste in Santo André-SP: Review. International Solid Waste Association World Congress, (January), 12. https://www.researchgate.net/publication/291334691

  • Douterelo, I., Boxall, J. B., Deines, P., Sekar, R., Fish, K. E., & Biggs, C. A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Research, 65, 134–156. https://doi.org/10.1016/j.watres.2014.07.008

    Article  CAS  Google Scholar 

  • Eberl, H. J. (2003). Simulation of chemical reaction fronts in anaerobic digestion of solid waste. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2667, 503–512. https://doi.org/10.1007/3-540-44839-x_54

  • Edelmann, W., & Engeli, H. (2005). More than 12 years of experience with commercial anaerobic digestion of the organic fraction of municipal solid wastes in Switzerland. ADSW 2005 Conference Proceedings. 1, 27–33.

  • Elsharkawy, K., Elsamadony, M., & Afify, H. (2019). Comparative analysis of common full scale reactors for dry anaerobic digestion process. E3S Web of Conferences, 83, 01011. https://doi.org/10.1051/e3sconf/20198301011

  • Forster-Carneiro, T., Fernández, L. A., Pérez, M., Romero, L. I., & Álvarez, C. J. (2004). Optimization of sebac start up phase of municipal solid waste anaerobic digestion. Chemical and Biochemical Engineering Quarterly, 18(4), 429–439.

    CAS  Google Scholar 

  • Francini, G., Lasagni, M., & Lombardi, L. (2020). Comparison of anaerobic digestion technologies: An Italian case study. Detritus, 94–104. https://doi.org/10.31025/2611-4135/2020.13921

  • Gavala, H. N., Angelidaki, I., & Ahring, B. K. (2003). Kinetics and modeling of anaerobic digestion process. In Biomethanation I, 81, 57–93. https://doi.org/10.1007/3-540-45838-7

  • Ge, X., Xu, F., & Li, Y. (2016). Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresource Technology, 205, 239–249. https://doi.org/10.1016/j.biortech.2016.01.050

    Article  CAS  Google Scholar 

  • Gunaseelan, V. N. (2016). Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 34(3), 195–204. https://doi.org/10.1177/0734242X15622815

  • Hiergeist, A., Gläsner, J., Reischl, U., & Gessner, A. (2015). Analyses of intestinal microbiota: Culture versus sequencing. ILAR Journal, 56(2), 228–240. https://doi.org/10.1093/ilar/ilv017

    Article  CAS  Google Scholar 

  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., et al. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11). https://doi.org/10.2166/wst.2016.336

  • Holliger, C., Fruteau de Laclos, H., & Hack, G. (2017). Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Frontiers in Energy Research, 5. https://doi.org/10.3389/fenrg.2017.00012

  • Huerta-Pujol, O., Soliva, M., Martínez-Farré, F. X., Valero, J., & López, M. (2010). Bulk density determination as a simple and complementary tool in composting process control. Bioresource Technology, 101(3), 995–1001. https://doi.org/10.1016/j.biortech.2009.08.096

    Article  CAS  Google Scholar 

  • Illmer, P., & Gstraunthaler, G. (2009). Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance. Waste Management, 29(1), 162–167. https://doi.org/10.1016/j.wasman.2008.02.005

    Article  CAS  Google Scholar 

  • Jagadish, K. S., Chanakya, H. N., Rajabapaiah, P., & Anand, V. (1998). Plug flow digestors for biogas generation from leaf biomass. Biomass and Bioenergy, 14(5–6), 415–423. https://doi.org/10.1016/S0961-9534(98)00003-8

    Article  CAS  Google Scholar 

  • Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 52, 142–154. https://doi.org/10.1016/J.RSER.2015.07.091

  • Jenkins, B. M., Williams, R. B., Adams, L. S., Peace, C., Petersen, G., & Leary, M. (2008). Current anaerobic digestion technologies used for treatment of municipal organic solid waste, (March).

  • Jiang, J., He, S., Kang, X., Sun, Y., Yuan, Z., Xing, T., et al. (2020). Effect of organic loading rate and temperature on the anaerobic digestion of municipal solid waste: Process performance and energy recovery. Frontiers in Energy Research, 8(May), 1–10. https://doi.org/10.3389/fenrg.2020.00089

    Article  CAS  Google Scholar 

  • Kalyuzhnyi, S., Veeken, A., & Hamelers, B. (2000). Two-particle model of anaerobic solid state fermentation. Water Science and Technology, 41(3), 43–50. https://doi.org/10.2166/wst.2000.0054

  • Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509–1630. https://doi.org/10.1080/10643389.2011.569871

    Article  CAS  Google Scholar 

  • Kasali, G. B., Senior, E., & Watson-Craik, I. A. (1989). Sodium bicarbonate effects on the anaerobic digestion of refuse. Journal of Chemical Technology & Biotechnology, 45(4), 279–289. https://doi.org/10.1002/jctb.280450405

    Article  CAS  Google Scholar 

  • Kouas, M., Torrijos, M., Sousbie, P., Harmand, J., & Sayadi, S. (2019). Modeling the anaerobic co-digestion of solid waste: From batch to semi-continuous simulation. Bioresource Technology, 274(November 2018), 33–42. https://doi.org/10.1016/j.biortech.2018.11.065

  • Lange, M., & Ahring, B. K. (2001). A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiology Reviews, 25(5), 553–571. https://doi.org/10.1111/j.1574-6976.2001.tb00591.x

    Article  CAS  Google Scholar 

  • Li, Y. F., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2014). Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 99(2), 969–980. https://doi.org/10.1007/s00253-014-6036-5

    Article  CAS  Google Scholar 

  • Li, Y. F., Shi, J., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2016). Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresource Technology, 200, 744–752. https://doi.org/10.1016/j.biortech.2015.10.078

  • Liew, L. N., Shi, J., & Li, Y. (2012). Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass and Bioenergy, 46, 125–132. https://doi.org/10.1016/j.biombioe.2012.09.014

  • Lin, L., Yu, Z., & Li, Y. (2017). Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 241, 1027–1035. https://doi.org/10.1016/j.biortech.2017.06.011

    Article  CAS  Google Scholar 

  • Liotta, F., Chatellier, P., Esposito, G., Fabbricino, M., Frunzo, L., Van Hullebusch, E. D., et al. (2015). Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste. Environmental Technology (United Kingdom), 36(7), 870–880. https://doi.org/10.1080/09593330.2014.965226

  • Lissens, G., Vandevivere, P., De Baere, L., Biey, E. M., & Verstraete, W. (2001). Solid waste digestors: Process performance and practice for municipal solid waste digestion. Water Science and Technology, 44(8), 91–102. https://doi.org/10.2166/wst.2001.0473

    Article  CAS  Google Scholar 

  • Liu, G., Zhang, R., El-Mashad, H. M., Dong, R., & Liu, X. (2012). Biogasification of green and food wastes using anaerobic-phased solids digester system. Applied Biochemistry and Biotechnology, 168(1), 78–90. https://doi.org/10.1007/s12010-011-9322-z

    Article  CAS  Google Scholar 

  • Lu, Y., Zhang, Q., Wang, X., Zhong, H., & Zhu, J. (2020). Effects of initial microbial community structure on the performance of solid-state anaerobic digestion of corn stover. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.121007

  • Lübken, M., Gehring, T., & Wichern, M. (2010). Microbiological fermentation of lignocellulosic biomass: Current state and prospects of mathematical modeling. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-009-2365-1

  • Lyberatos, G., & Skiadas, I. V. (1999). Modelling of anaerobic digestion - a review. Global NEST Journal, 1(2), 63–76. https://doi.org/10.2478/v10026-008-0011-9

  • Macario, A. J. L., Dugan, C. B., & Macario, E. C. D. E. (1987). Antigenic mosaic of Methanogenium spp.: Analysis with poly- and monoclonal antibody probes, 169(2), 666–669.

  • Martin, D. J., Potts, L. G. A., & Heslop, V. A. (2003). Reaction mechanisms in solid-state anaerobic digestion. II. The significance of seeding. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 81(3), 180–188. https://doi.org/10.1205/095758203765639889

  • Martin, Duncan J. (2000). A novel mathematical model of solid-state digestion. Biotechnology Letters, 22(1), 91–94. https://doi.org/10.1023/A:1005633117706

  • Motte, J. C., Trably, E., Escudié, R., Hamelin, J., Steyer, J. P., Bernet, N., et al. (2013). Total solids content: A key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 6(1), 1–9. https://doi.org/10.1186/1754-6834-6-164

    Article  CAS  Google Scholar 

  • Murphy, J. D., & McCarthy, K. (2005). The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy, 30(14), 2111–2127. https://doi.org/10.1016/j.renene.2005.02.004

    Article  CAS  Google Scholar 

  • Norbu, T., Visvanathan, C., & Basnayake, B. (2005). Pretreatment of municipal solid waste prior to landfilling. Waste Management, 25(10), 997–1003. https://doi.org/10.1016/j.wasman.2005.06.006

    Article  CAS  Google Scholar 

  • Ozkaya, B., Demir, A., & Bilgili, M. S. (2007). Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modelling & Software, 22(6), 815–822. https://doi.org/10.1016/j.envsoft.2006.03.004

  • Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254(November 2017), 312–324. https://doi.org/10.1016/j.biortech.2018.01.069

  • Pohl, M., Mumme, J., Heeg, K., & Nettmann, E. (2012). Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresource Technology, 124, 321–327. https://doi.org/10.1016/j.biortech.2012.08.063

    Article  CAS  Google Scholar 

  • Polizzi, C., Alatriste-Mondragón, F., & Munz, G. (2017). Modeling the disintegration process in anaerobic digestion of tannery Sludge And Fleshing. Frontiers in Environmental Science, 5(JUN), 1–10. https://doi.org/10.3389/fenvs.2017.00037

  • Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies, 12(6). https://doi.org/10.3390/en12061106

  • Ramachandran, A., Rustum, R., & Adeloye, A. J. (2019). Review of anaerobic digestion modeling and optimization using nature-inspired techniques. Processes, 7(12), 1–12. https://doi.org/10.3390/PR7120953

  • Raposo, F., Borja, R., & Ibelli-Bianco, C. (2020). Predictive regression models for biochemical methane potential tests of biomass samples: Pitfalls and challenges of laboratory measurements. Renewable and Sustainable Energy Reviews, 127(January), 109890. https://doi.org/10.1016/j.rser.2020.109890

  • Raposo, F., Fernández-Cegrí, V., de la Rubia, M. A., Borja, R., Béline, F., Cavinato, C., et al. (2011). Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology and Biotechnology, 86(8), 1088–1098. https://doi.org/10.1002/jctb.2622

    Article  CAS  Google Scholar 

  • Rapport, J., Zhang, R., Jenkins, B. M., Williams, R. B., Schwarzenegger, A., Adams, L. S., Brown, M. R., & Chair, B. (2008). Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. 125, 0. https://www.ciwmb.ca.gov/Publications/1-800-CA-WASTE

  • Rapport, J. L., Zhang, R., Williams, R. B., & Jenkins, B. M. (2012). Anaerobic digestion technologies for the treatment of municipal solid waste. International Journal of Environment and Waste Management, 9(1–2), 100–122. https://doi.org/10.1504/IJEWM.2012.044163

    Article  CAS  Google Scholar 

  • Rattanapan, C., Sinchai, L., Suksaroj, T. T., Kantachote, D., & Ounsaneha, W. (2019). Biogas production by co-digestion of canteen food waste and domestic wastewater under organic loading rate and temperature optimization. Environments - MDPI, 6(2). https://doi.org/10.3390/environments6020016

  • Regueiro, L., Lema, J. M., & Carballa, M. (2015). Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresource Technology, 197, 208–216. https://doi.org/10.1016/j.biortech.2015.08.076

    Article  CAS  Google Scholar 

  • Romano, R. T., & Zhang, R. (2011). Anaerobic digestion of onion residuals using a mesophilic anaerobic phased solids digester. Biomass and Bioenergy, 35(10), 4174–4179. https://doi.org/10.1016/j.biombioe.2011.06.036

    Article  CAS  Google Scholar 

  • Saghouri, M., Abdi, R., Ebrahimi-Nik, M., Rohani, A., & Maysami, M. (2020). Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–17. https://doi.org/10.1080/15567036.2020.1767728

  • Saint-Joly, C., Desbois, S., & Lotti, J. P. (2000). Determinant impact of waste collection and composition on anaerobic digestion performance: Industrial results. Water Science and Technology, 41(3), 291–297. https://doi.org/10.2166/wst.2000.0083

    Article  CAS  Google Scholar 

  • Shi, J., Wang, Z., Stiverson, J. A., Yu, Z., & Li, Y. (2013). Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresource Technology, 136, 574–581. https://doi.org/10.1016/j.biortech.2013.02.073

    Article  CAS  Google Scholar 

  • Sinha, S., Bose, P., Jawed, M., John, S., & Tare, V. (2002). Application of neural network for simulation of upflow anaerobic sludge blanket (UASB) reactor performance. Biotechnology and Bioengineering, 77(7), 806–814. https://doi.org/10.1002/bit.10168

  • Smith, J., Balana, B. B., Black, H., von Blottnitz, H., Casson, E., Glenk, K., et al. (2013). The Potential of Small-Scale Biogas Digesters to Alleviate Poverty and Improve Long Term Sustainability of Ecosystem Services in Sub-Saharan Africa. Bioresource Technology, 5(0), 22. https://doi.org/10.1002/bbb

  • Stephanopoulos, G. N., Aristidou, A. A., & Nielsen, J. (1998). Material Balances and Data Consistency. Metabolic Engineering, 115–146. https://doi.org/10.1016/b978-012666260-3/50005-4

  • Suksong, W., Kongjan, P., Prasertsan, P., Imai, T., & O-Thong, S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166–174. https://doi.org/10.1016/j.biortech.2016.04.077

    Article  CAS  Google Scholar 

  • Supaphol, S., Jenkins, S. N., Intomo, P., Waite, I. S., & O’Donnell, A. G. (2011). Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresource Technology, 102(5), 4021–4027. https://doi.org/10.1016/j.biortech.2010.11.124

    Article  CAS  Google Scholar 

  • Ten Brummeler, E. (2000). Full scale experience with the BIOCEL process. Water Science and Technology, 41(3), 299–304. https://doi.org/10.2166/wst.2000.0084

    Article  Google Scholar 

  • Vandevivere, P., Baere, L. De, & Verstraete, W. (2003). Types of anaerobic digesters for solid wastes. Biomethanization of OFMSW, 1–31.

  • Vavilin, V. A., Lokshina, L. Y., Jokela, J. P. Y., & Rintala, J. A. (2004). Modeling solid waste decomposition. Bioresource Technology, 94(1), 69–81. https://doi.org/10.1016/j.biortech.2003.10.034

  • Vavilin, V A, Rytov, S. V., & Lokshina, L. Y. (1996). A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 56, 229–237. https://doi.org/10.1016/0960-8524(96)00034-X

  • Vavilin, Vasily A., & Angelidaki, I. (2005). Anaerobic degradation of solid material: Importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnology and Bioengineering, 89(1), 113–122. https://doi.org/10.1002/bit.20323

  • Vavilin, Vasily A., Rytov, S. V., Lokshina, L. Y., Pavlostathis, S. G., & Barlaz, M. A. (2003). Distributed Model of Solid Waste Anaerobic Digestion: Effects of Leachate Recirculation and pH Adjustment. Biotechnology and Bioengineering, 81(1), 66–73. https://doi.org/10.1002/bit.10450

  • Veluchamy, C., & Kalamdhad, A. S. (2017). A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. Journal of Cleaner Production, 162, 371–379. https://doi.org/10.1016/j.jclepro.2017.06.099

  • Vogt, G. M., Liu, H. W., Kennedy, K. J., Vogt, H. S., & Holbein, B. E. (2002). Super blue box recycling (SUBBOR) enhanced two-stage anaerobic digestion process for recycling municipal solid waste: Laboratory pilot studies. Bioresource Technology, 85(3), 291–299. https://doi.org/10.1016/S0960-8524(02)00114-1

    Article  CAS  Google Scholar 

  • Wang, Z. W., Xu, F., Manchala, K. R., Sun, Y., & Li, Y. (2016). Fractal-like kinetics of the solid-state anaerobic digestion. Waste Management, 53(1), 55–61. https://doi.org/10.1016/j.wasman.2016.04.019

  • Wellinger, A., Wyder, K., & Metzler, A. E. (1993). Kompogas - A new system for the anaerobic treatment of source separated waste. Water Science and Technology, 27(2), 153–158. https://doi.org/10.2166/wst.1993.0095

    Article  CAS  Google Scholar 

  • Wichern, M., Gehring, T., Fischer, K., Andrade, D., Lübken, M., Koch, K., et al. (2009). Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM 1. Bioresource Technology, 100(4), 1675–1681. https://doi.org/10.1016/j.biortech.2008.09.030

  • Xu, F., Li, Y., & Wang, Z. W. (2015). Mathematical modeling of solid-state anaerobic digestion. Progress in Energy and Combustion Science, 51, 49–66. https://doi.org/10.1016/j.pecs.2015.09.001

    Article  Google Scholar 

  • Xu, F., Wang, Z. W., & Li, Y. (2014). Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresource Technology, 173, 168–176. https://doi.org/10.1016/j.biortech.2014.09.090

  • Yang, L., Xu, F., Ge, X., & Li, Y. (2015). Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 44, 824–834. https://doi.org/10.1016/j.rser.2015.01.002

    Article  CAS  Google Scholar 

  • Yi, J., Dong, B., Jin, J., & Dai, X. (2014). Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102548

  • Zhang, Z. (2002). (12) United States Patent, 1(12), 85–106.

  • Zhou, H., & Wen, Z. (2019). Solid-state anaerobic digestion for waste management and biogas production. Advances in Biochemical Engineering/biotechnology, 169, 147–168. https://doi.org/10.1007/10_2019_86

    Article  CAS  Google Scholar 

  • Zhu, B., Zhang, R., Gikas, P., Rapport, J., Jenkins, B., & Li, X. (2010). Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology, 101(16), 6374–6380. https://doi.org/10.1016/j.biortech.2010.03.075

    Article  CAS  Google Scholar 

  • Zhu, Y., Zhang, Y., Luo, D., Chong, Z., Li, E., & Kong, X. (2021). A review of municipal solid waste in China: Characteristics, compositions, influential factors and treatment technologies. Environment, Development and Sustainability, 23(5), 6603–6622. https://doi.org/10.1007/s10668-020-00959-9

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the IMPRINT, Ministry of Human Resource and Development (MHRD), New Delhi, India; Ministry of Urban Development (MoUD), New Delhi, India; and Department of Biotechnology (DBT), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu K. Khuntia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuntia, H.K., Paliwal, A., Kumar, D. et al. Review on solid-state anaerobic digestion of lignocellulosic biomass and organic solid waste. Environ Monit Assess 194, 514 (2022). https://doi.org/10.1007/s10661-022-10160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10160-2

Keywords

Navigation