Skip to main content

Advertisement

Log in

Ecological risk assessment of the riverine and deltaic environments (Rozechai River, Urmia Lake, Iran), using sediment quality indices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rozechai River is one of the tributaries of Urmia Lake (the nrthwest of Iran), which has experienced severe pollution and water level fluctuations in the coastal zone over the past four decades. The present study aimed to assess the ecological risk for aquatic life and human health. Research methods were designed for applying the sediment quality guidelines (LEL, PEL, SEL), sediment quality indices (Cf, Cd, Er, RI), and enrichment factor (EF) based on the concentration of toxic metals in sediments. Event-based geochronology of the sediment column showed that the high stands in the water level of the Urmia Lake (> 1274 m) occurred in 1983, 1989, and 1995. Thus, As, Pb, Zn, Cd, Cr, and Ni reached a moderate to considerable enrichment under the oxidation and alkaline condition. Consequently, a moderated level of ecological risk index (RI) was predominant between 1983 and 1999. The uppermost 35 cm of the sediment column was deposited during a severe drought period to which H2S bearing water and reducing status contributed. In such conditions, the low ecological risk was resulted in the basin due to the lower rate of the toxic metal influx. The industrial, urban, and agricultural wastewaters contributed to the release of toxic metals and the dominance of moderate to considerable enrichment, which led to a moderate ecological risk at the coastal zone of the Rozechai River. The sediment column of the deltaic area has experienced a mean sedimentation rate of 1.66 cm year−1 since 1982.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alipour, S. (2006). Hydrogeochemistry of seasonal variation of Urmia Salt Lake, Iran. Saline System, 2, 2–19. https://doi.org/10.1186/1746-1448-2-9.

    Article  CAS  Google Scholar 

  • Bagheri, H., Kamali, M., Mostajaboddavati, S. M., Raeissi, K., & Zare, M. R. (2019). Radionuclide and trace elements geochemistry of the Urmia Lake Shore of Iran. Environment and Earth Science, 78(13), 373. https://doi.org/10.1007/s12665-019-8372-3

    Article  CAS  Google Scholar 

  • Blott, S. J., & Kenneth, P. (2001). GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248.

    Article  Google Scholar 

  • Carter, J. A., Barros, A. I., Nóbrega, J. A., & Donati, G. L. (2018). Traditional calibration methods in atomic spectrometry and new calibration strategies for inductively coupled plasma mass spectrometry. Frontiers in Chemistry, 6, 504. https://doi.org/10.3389/fchem.2018.00504

    Article  CAS  Google Scholar 

  • CBSQG. (2003). Recommendations for use & application interim guidance. In: Dove J (Ed.) Consensus-based sediment quality guidelines. Department of Natural Resources, Wisconsin.

  • CCME. (1995). Protocol for the derivation of canadian sediment quality guidelines for the protection of aquatic life. In: Division ECGS (Ed.). Environment Canada, Guidelines Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa.

  • Cohen, A. S. (2003). Paleolimnology: The history and evolution of lake systems. Oxford University Press.

    Book  Google Scholar 

  • Connie, L., Gaudet, K. A., Keenleyside, R. A., Kent, S. L., & Wong, S. M. P. (1995). How should numerical criteria be used? The Canadian approach. Human and Ecological Risk Assessment, 1, 19–28.

    Article  Google Scholar 

  • Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., et al. (2019). Primary concept of nickel toxicity—An overview. Journal of Basic and Clinical Physiology and Pharmacology, 30, 141–152.

    Article  CAS  Google Scholar 

  • Davoodi, H., Gharibreza, M., Negarestan, H., Mortazavi, M. S., & Lak, R. (2017). Ecological risk assessment of the Assaluyeh and Bassatin estuaries (northern Persian Gulf) using sediment quality indices. Estuarine, Coastal and Shelf Science, 192, 17–28.

    Article  CAS  Google Scholar 

  • EPA. (2009). Guidelines for drinking water quality. Environmental Protection Agency.

    Google Scholar 

  • Ernst, T. W. (1970). Geochemical facies analysis. Elsevier.

    Google Scholar 

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5, 47–58.

    Article  CAS  Google Scholar 

  • Gharibreza, M., & Masoumi, H. (2021). Geochemistry and ecological risk assessment of the coastal Tajan River using sediment quality indices (Southern Caspian Sea, Iran). Marine Pollution Bulletin, 173, 113–154. https://doi.org/10.1016/j.marpolbul.2021.113154

    Article  CAS  Google Scholar 

  • Gharibreza, M., & Ashraf, M. A. (2014). Applied limnology: Comprehensive view from watershed to lake. Springer.

    Book  Google Scholar 

  • Gharibreza, M., Habibi, A., Imamjomeh, S. R., & Ashraf, M. A. (2014). Coastal processes and sedimentary facies in the Zohreh River Delta (Northern Persian Gulf). CATENA, 122, 150–158.

    Article  Google Scholar 

  • Gharibreza, M., Raj, J. K., Yusoff, I., Othman, Z., Tahir, W. Z. W. M., & Ashraf, M. A. (2013). Land use changes and soil redistribution estimation using 137Cs in the tropical Bera Lake catchment, Malaysia. Soil and Tillage Research, 131, 1–10.

    Article  Google Scholar 

  • Gharibreza, M., Raj, J. K., Yusoff, I., Othman, Z., Wan Zakaria, W. T., & Ashraf, M. A. (2012). Historical variations of Bera Lake (Malaysia) sediments geochemistry using radioisotopes and sediment quality indices. Journal of Radioanalytical and Nuclear Chemistry, 295, 1715–1730.

    Article  Google Scholar 

  • Gharibreza, M., Zaman, M., Porto, P., Fulajtar, E., Parsaei, L., & Eisaei, H. (2020). Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan Province, Iran). The International Soil and Water Conservation Research, 8(4), 393–405. https://doi.org/10.1016/j.iswcr.2020.07.006.

    Article  Google Scholar 

  • GIPME. (1999). Guidance on Assessment of Sediment Quality. In: IMO (Ed.) Global investigation of pollution in the marine environment. United Nations Environment Programme (UNEP), Intergovernmental Oceanographic Commission (IOC), and International Maritime Organization (IMO), London.

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hakanson, L. (1994). A review on effect-dose-sensitivity models for aquatic ecosystems. International Review of Hydrobiology, 79, 621–667.

    CAS  Google Scholar 

  • Hallberg, R. O. (1982). Diagenetic and environmental effects on heavy metal distribution in sediments: A hypothesis with an illustration from the Baltic Sea. In: Manheim, K.A.F.a.F.T. (Ed.) The dynamic environment of the ocean floor. Lexington Books, Lexington, Mass, pp. 305–316.

  • IAEA. (1995). Use of nuclear techniques in studying soil erosion and siltation. Paper presented at the Proceedings of an Advisory Group meeting, Vienna.

  • Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Article  Google Scholar 

  • Kingston, H. M., & Jassie, L. B. (1998). Introduction to microwave sample preparation theory and practice. American Chemical Society.

    Google Scholar 

  • Koinig, K. A., Shotyk, W., Lotter, A. F., Ohlendorf, C., & Sturm, M. (2003). 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an Alpine Lake—The role of climate, vegetation, and land use history. Journal of Paleolimnology, 30, 307–320.

    Article  Google Scholar 

  • Last, W. M., & Smol, J. P. (2001). Tracking environmental change using lake sediments. Kluwer Academic Publishers New York.

    Book  Google Scholar 

  • Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 126, 5–19.

    Article  Google Scholar 

  • Locat, J., Galvez Cloutier, R., Chaney, R., & Demars, D. (2003). Contaminated sediments characterization evaluation mitigation restoration and management strategy performance. ASTM Special Technical Publication.

    Book  Google Scholar 

  • Loring, D., Naes, K., Dahle, S., Matishov, G. G., & Illin, D. (1995). Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Marine Geology, 128, 152–167.

    Article  Google Scholar 

  • Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment, 24, 2070–2087.

    Article  CAS  Google Scholar 

  • Nezhad, M. T. K., Tabatabai, S. M., & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. Journal of Geochemical Exploration, 152, 91–109.

    Article  Google Scholar 

  • Perry, C., & Taylor, K. (2007). Environmental sedimentology. Blackwell Publishing Ltd.

    Google Scholar 

  • Persaud, D., Jaagumagi, R., & Hayton, A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. In: Branch, W.R. (Ed.) Ministry of the Environment, Ontario.

  • Pirozfar, P., Asghari, N., Khodaeian, Z., Feizi, A., Didari, H., Enali, A., & Sartipi, A. (2015). Geochemical and hydrochemical studies of medical geology of the West of Urmia Lake. In: Kouri, M., Lak, R. (Eds.) Geological survey and mining exploration organization of Iran, Tehran.

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Safety, 120, 377–385.

    Article  CAS  Google Scholar 

  • Rashid, T. (2014). Sea level research: methods and techniques. Holocene sea-level scenarios in Bangladesh. Springer Briefs in Oceanography.

  • Rumble, J. (2016). CRC handbook of chemistry and physics. CRC Press.

    Google Scholar 

  • Sharifi, A., Shah-Hosseini, M., Pourmand, A., Esfahaninejad, M., & Haeri-Ardakani, O. (2018). The vanishing of Urmia Lake: A geolimnological perspective on the hydrological imbalance of the world’s second largest hypersaline lake (pp. 1–38). Springer.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry, chemical equilibria and rates in natural waters. Wiley and Sons.

    Google Scholar 

  • Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis and carcinogenesis—A health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. Jackson State University, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA.

  • Tremblay, H., Desrosiers, G., Locat, J., Mucci, A., & Pelletier, E. (2003) Characterization of a catastrophic flood sediment layer: Geological, geoteehnieai, biological, and geochemical signatures In: J. Locat, R.G.-C., R. C. Chancy, and K. R. Demars (Ed.) Contaminated sediments: Characterization, evaluation, mitigation~restoration, and management strategy performance. ASTM International, 1442 ASTM International, West Conshohocken, PA.

  • Valero-Garcés, B. L., Grosjean, A., Schwalb, M., Geyh, B., & Kelts, M. (1996). Limnogeology of Laguna Miscanti: Evidence for mid to late Holocene moisture changes in the Atacama Altiplano (northern Chile). Journal of Paleolimnology, 16, 1–12.

    Article  Google Scholar 

  • Waddell, K. M., & Giddings, E. M. (2004). Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998–99. U.S. Geological Survey, USA.

  • Waiser, M. J., & Robarts, R. D. (2009). Saline inland waters. In: Likens, G.E. (Ed.) Lake ecosystem ecology: A global perspective. Elsevier, USA.

  • Wegscheider, W. (1994). Standardization, quality control and education in analytical chemistry. Fresen Z Znal Chem, 349, 784–793.

    Article  CAS  Google Scholar 

  • Welz, B., & Sperling, M. (1998). Atomic absorption spectrometry (Vol. 3rd). Wiley-VCH.

    Book  Google Scholar 

  • Yamani, M., Moghimi, E., Lak, R., Jafarbighlo, M., & Salehipour, A. (2015). Reconstruction of the ancient surfaces of Lake Urmia in the Quaternary with the study of lake barracks. Invest Geograph, 47, 1–19.

    Google Scholar 

Download references

Acknowledgements

The authors offer the sincerest gratitude to the staff of the technical division of SCWMRI for their help in sampling, sample preparation, and analysis and appreciate the West-Azarbaijan Agricultural and Natural Resources Research and Education Center for their field studies supports.

Funding

The study was supported by the Soil Conservation and Watershed Management Research Institute of Iran (SCWMRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran (Grant Number [0–29-29–017-960426]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Gharibreza.

Ethics declarations

Ethics approval

This is an observational study. The Soil Conservation and Watershed Management and Watershed Management Research Institute Ethics Committee has confirmed that no ethical approval is required.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibreza, M., Mehdizadeh, M., Masoumi, H. et al. Ecological risk assessment of the riverine and deltaic environments (Rozechai River, Urmia Lake, Iran), using sediment quality indices. Environ Monit Assess 194, 447 (2022). https://doi.org/10.1007/s10661-022-10124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10124-6

Keywords

Navigation