Skip to main content
Log in

Response of algal biomass and macrophyte communities to internal or external nutrient loading

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nutrient input from internal and external sources could regulate the variability and abundance of algal and macrophytes in freshwater lakes. This study explores the response of algal and macrophyte growth in relation to internal and external nutrient loading. This study was conducted over a 12-month period in a eutrophic shallow urban lake known as Slim River Lake, which located in Perak state, Malaysia. The internal nutrient loading was calculated during five identified dry periods. Meanwhile, external nutrient loading was measured from stormwater runoff after storm events. Algal biomass was measured twice a month, while total macrophyte abundance was measured once in a month. In this lake, internal nutrient loading could contribute up to 7538.33 kg total phosphorus and 42.23 kg total nitrogen during dry periods. Meanwhile, external nutrient loading quantified from the stormwater runoff contributed up to 401,500 kg total phosphorus and 4611.67 kg total nitrogen. The highest monthly mean for algal biomass and total macrophyte abundance was recorded as 60,343.75 cells/mL and 821.50, respectively. Based on the Pearson correlation analysis, algal biomass was significantly correlated with the internal total phosphorus loading (r = 0.54, p < 0.05). In addition, algal biomass also shows an inverse relationship with the external total phosphorus loading (r =  − 0.44, p < 0.05). In contrast, total macrophyte abundance was significantly correlated with the external total phosphorus loading (r = 0.50, p < 0.05) and external total nitrogen loading (r = 0.44, p < 0.05). These results suggest that variation of nutrient sources triggers a different response by algal and macrophytes in the study lake. In implications, these findings show that a combination approach in reducing nutrients from sediment and anthropogenic sources is required for potential lake restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data are available from the authors upon reasonable request.

References

  • Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Poh, K. B. (2021). Role of internal and external nutrients loading in regulating in-lake nutrient concentrations in a eutrophic shallow lake. Environment Asia, 14(1), 63–68. https://doi.org/10.14456/ea.2021.7

  • Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Song, H. (2020). Comparison of water level and eutrophication indicators during the wet and dry period in a eutrophic urban lake. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.03.003

    Article  Google Scholar 

  • Alahuhta, J. (2014). Geographic patterns of lake macrophyte communities and species richness at regional scale. Journal of Vegetation Science, 1–12. https://doi.org/10.1111/jvs.12261

  • APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, American Water Works Association, Water Environment Federation. Wash ington, DC.

  • Ayoade, A. A., & Aderogba, A. (2020). Spatial and temporal distribution of plankton in a tropical reservoir, southwestern nigeria. Egyptian Journal of Aquatic Biology and Fisheries, 24(5), 161–181. https://doi.org/10.21608/ejabf.2020.104724

  • Bakker, E. S., & Hilt, S. (2016). Impact of water-level fluctuations on cyanobacterial blooms: Options for management. Aquatic Ecology, 50(3), 485–498. https://doi.org/10.1007/s10452-015-9556-x

    Article  CAS  Google Scholar 

  • Bensafia, N., Djabourabi, A., Touati, H., Rachedi, M., & Belhaoues, S. (2020). Evolution of physicochemical parameters and trophic state of three Park National of El-Kala water bodies (North-east Algeria). Egyptian Journal of Aquatic Biology & Fisheries, 24(2), 249–263. https://doi.org/10.1016/j.agrformet.2007.11.012

    Article  Google Scholar 

  • Cai, L., Zhu, G., Zhu, M., Xu, H., & Qin, B. (2012). Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake. Water Science and Engineering, 5(4), 361–374. https://doi.org/10.3882/j.issn.1674-2370.2012.04.001

    Article  CAS  Google Scholar 

  • Champion, P., & Reeves, P. (2004). Macrophyte identification guides, https://www.niwa.co.nz/freshwater-and-estuaries/managementtools/identificationguides-and-fact-sheets/macrophyte-plant-id-guides

  • Cheruvelil, K. S., & Soranno, P. A. (2008). Relationships between lake macrophyte cover and lake and landscape features. Aquatic Botany, 88(3), 219–227. https://doi.org/10.1016/j.aquabot.2007.10.005

    Article  Google Scholar 

  • Dalu, T., Clegg, B., & Nhiwatiwa, T. (2012). Aquatic macrophytes in a tropical african reservoir: Diversity, communities and the impact of reservoir-level fluctuations. Transactions of the Royal Society of South Africa, 67(3), 117–125. https://doi.org/10.1080/0035919X.2012.712554

    Article  Google Scholar 

  • Dar, N. A., Pandit, A. K., & Ganai, B. A. (2015). Factors affecting the distribution patterns of aquatic macrophytes. Limnological Review, 14(2), 75–81. https://doi.org/10.2478/limre-2014-0008

    Article  Google Scholar 

  • Dubey, D., & Dutta, V. (2020). Nutrient enrichment in lake ecosystem and its effects on algae and macrophytes. In V. Shukla, & N. Kumar (Eds.), Environmental concerns and sustainable development (pp. 81–126). Singapore: Springer. https://doi.org/10.1007/978-981-13-6358-0_5

  • Engloner, A. I., Szalma, E., Sipos, K., & Dinka, M. (2013). Occurence and habitat preference of aquatic macrophytes in a large river channel. Community Ecology, 14, 243–248.

    Article  Google Scholar 

  • Engloner, A. I. (2012). Alternative ways to use and evaluate Kohler’s ordinal scale to assess aquatic macrophyte abundance. Ecological Indicators, 20, 238–243. https://doi.org/10.1016/j.ecolind.2012.02.023

    Article  Google Scholar 

  • Frumin, G. T., & Gildeeva, I. M. (2014). Eutrophication of water bodies—A global environmental problem. Russian Journal of General Chemistry, 84(13), 2483–2488. https://doi.org/10.1134/S1070363214130015

    Article  CAS  Google Scholar 

  • Hilt, S., Alirangues Nuñez, M. M., Bakker, E. S., Blindow, I., Davidson, T. A., Gillefalk, M., … Sayer, C. D. (2018). Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Frontiers in Plant Science, 9(February). https://doi.org/10.3389/fpls.2018.00194

  • Horppila, J. (2019). Sediment nutrients, ecological status and restoration of lakes. Water Research, 160, 206–208. https://doi.org/10.1016/j.watres.2019.05.074

    Article  CAS  Google Scholar 

  • Hu, S., Wang, T., Xu, S., Ma, L., & Sun, X. (2019). Seasonal release potential of sediments in reservoirs and its impact on water quality assessment. International Journal of Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16183303

  • Huang, T., Li, X., Rijnaarts, H., Grotenhuis, T., Ma, W., Sun, X., & Xu, J. (2014). Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China. Science of the Total Environment, 485–486(1), 820–827. https://doi.org/10.1016/j.scitotenv.2014.01.008

    Article  CAS  Google Scholar 

  • Huang, Y. F., Ang, S. Y., Lee, K. M., & Lee, T. S. (2015). Quality of water resources in Malaysia. In T. S. Lee (Ed.), Research and practices in water quality. Intech. https://doi.org/10.5772/58969

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(August). https://doi.org/10.1038/s41579-018-0040-1

  • Janke, B. D., Finlay, J. C., & Hobbie, S. E. (2017). Trees and streets as drivers of urban stormwater nutrient pollution. Environmental Science and Technology. https://doi.org/10.1021/acs.est.7b02225

    Article  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., … Winder, M. (2005). Lake responses to reduced nutrient loading–An analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50(10), 1747–1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x

  • Johnson, J. (2010). Estimation of internal phosphorus loading for Cedar Island Lake. Freshwater Scientific Services.

  • Kowalczewska-Madura, K., Kozak, A., Dera, M., & Goldyn, R. (2019a). Internal loading of phosphorus from bottom sediments of two meso-eutrophic lakes. International Journal of Environmental Research. https://doi.org/10.1007/s41742-019-00167-y

    Article  Google Scholar 

  • Kowalczewska-Madura, K., Kozak, A., Martyna, D., & Goldyn, R. (2019b). Internal loading of phosphorus from bottom sediments of two meso‑eutrophic lakes. International Journal of Environmental Research, (Petterson 1998). https://doi.org/10.1007/s41742-019-00167-y

  • Kuiper, J. J., Verhofstad, M. J. J. M., Louwers, E. L. M., Bakker, E. S., Brederveld, R. J., Gerven, L. P. A. Van, … Mooij, W. M. (2017). Mowing submerged macrophytes in shallow lakes with alternative stable states: Battling the good guys ? Environmental Management, 59, 619–634. https://doi.org/10.1007/s00267-016-0811-2

  • Lee, H. W., Lee, Y. S., Kim, J., Lim, K. J., & Choi, J. H. (2019). Contribution of internal nutrients loading on the water quality of a reservoir. Water.

  • Lewis, A. S. L., Kim, B. S., Edwards, H. L., Wander, H. L., Garfield, C. M., Murphy, H. E., … Bruesewitz, D. A. (2020). Prevalence of phytoplankton limitation by both nitrogen and phosphorus related to nutrient stoichiometry, land use, and primary producer biomass across the northeastern United States northeastern United States. Inland Waters, 10(1), 42–50. https://doi.org/10.1080/20442041.2019.1664233

  • Lougheed, V. L., Crosbie, B., & Chow-fraser, P. (2001). Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: Latitude, land use, and water quality effects. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1603–1612. https://doi.org/10.1139/cjfas-58-8-1603

    Article  Google Scholar 

  • Malik, D. S., & Joshi, N. (2013). Distribution pattern of aquatic macrophytes and their biomass in relation to some nutrients in Asan wetland, India. International Journal for Environmental Rehabilitation and Cinservation, 4(1), 1–16.

    Google Scholar 

  • McCarthy, J. (2008). Chapter 8 Pollutant loading calculations. In New Hampshire stormwater manual: Volume 1: Stormwater and antidegradation. New Hampshire Department of Environmental Services.

  • NAHRIM. (2015). National Lake Water Quality Criteria and Standards. National Hydraulic Research Institute of Malaysia (NAHRIM), 1–25.

  • Narasimha Ramulu, K., & Benarjee, G. (2016). Diversity and distribution of macrophytes in Nagaram tank of Warangal district, Telangana state. International Journal of Fisheries and Aquatic Studies, 4(1), 270–275.

    Google Scholar 

  • Ni, Z., Wang, S., & Wang, Y. (2016). Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environmental Pollution, 219, 537–544. https://doi.org/10.1016/j.envpol.2016.05.087

    Article  CAS  Google Scholar 

  • Nikolai, S. J., & Dzialowski, A. R. (2014). Effects of internal phosphorus loading on nutrient limitation in a eutrophic reservoir. Limnologica, 49, 33–41. https://doi.org/10.1016/j.limno.2014.08.005

    Article  CAS  Google Scholar 

  • Nürnberg, G. K., Molot, L. A., Connor, E. O., Jarjanazi, H., Winter, J., & Young, J. (2013). Evidence for internal phosphorus loading, hypoxia and effects on phytoplankton in partially polymictic Lake Simcoe, Ontario. Journal of Great Lakes Research, 39(2), 259–270. https://doi.org/10.1016/j.jglr.2013.03.016

  • Orihel, D. M., Hadas, O., Pinkas, R., Viner-mozzini, Y., & Sukenik, A. (2013). Internal nutrient loading may increase microcystin concentrations in freshwater lakes by promoting growth of Microcystis populations. Annales de Limnologie, 49, 225–235. https://doi.org/10.1051/limn/2013052

  • Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbial Ecology, 65(4), 995–1010. https://doi.org/10.1007/s00248-012-0159-y

    Article  CAS  Google Scholar 

  • Paerl, H. W., Xu, H., Hall, N. S., Rossignol, K. L., Joyner, A. R., Zhu, G., & Qin, B. (2015). Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: Implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology, 30(1), 5–24. https://doi.org/10.1080/02705060.2014.994047

    Article  CAS  Google Scholar 

  • Radbourne, A. D., Elliott, J. A., Maberly, S. C., Ryves, D. B., & Anderson, N. J. (2019a). The impacts of changing nutrient load and climate on a deep, eutrophic, monomictic lake. Freshwater Biology, 64(6), 1–14. https://doi.org/10.1111/fwb.13293

    Article  CAS  Google Scholar 

  • Radbourne, A. D., Elliott, J. A., Maberly, S. C., Ryves, D. B., & Anderson, N. J. (2019b). The impacts of changing nutrient load and climate on a deep, eutrophic, monomictic lake. Freshwater Biology, 64(6), 1169–1182. https://doi.org/10.1111/fwb.13293

    Article  CAS  Google Scholar 

  • Randall, M. C., Carling, G. T., Dastrup, D. B., Miller, T., Nelson, S. T., Rey, K. A., … Aanderud, Z. T. (2019). Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS ONE, 1–17. https://doi.org/10.1371/journal.pone.0212238

  • Reichwaldt, E. S., & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Research, 46(5), 1372–1393. https://doi.org/10.1016/j.watres.2011.11.052

    Article  CAS  Google Scholar 

  • Reichwaldt, E. S., Stone, D., Barrington, D. J., Sinang, S. C., & Ghadouani, A. (2016). Development of toxicological risk assessment models for acute and chronic exposure to pollutants. Toxins, 8(9), 1–17. https://doi.org/10.3390/toxins8090251

    Article  Google Scholar 

  • Richardson, J., Feuchtmayr, H., Miller, C., Hunter, P. D., Maberly, S. C., & Carvalho, L. (2019). Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Global, 3365–3380. https://doi.org/10.1111/gcb.14701

  • Rosset, V., Lehmann, A., & Oertli, B. (2010). Warmer and richer ? Predicting the impact of climate warming on species richness in small temperate waterbodies. Global Change Biology, 16, 2376–2387. https://doi.org/10.1111/j.1365-2486.2010.02206.x

    Article  Google Scholar 

  • Schneider, S. C., Cara, M., Eriksen, T. E., Budzakoska Goreska, B., Imeri, A., Kupe, L., … Veljanoska Sarafiloska, E. (2014). Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica, 44, 90–97. https://doi.org/10.1016/j.limno.2013.09.002

  • Sharip, Z, Schooler, S. S., & Hipsey, M. R. (2012). Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini, Malaysia. Biological Invasions, (February). https://doi.org/10.1007/s10530-011-0137-1

  • Sharip, Z., Zaki, A. T. A., Shapai, M. A. H. M., Suratman, S., & Shaaban, A. J. (2014). Lakes of Malaysia: Water quality, eutrophication and management. Lakes and Reservoirs: Research and Management, 19(2), 130–141. https://doi.org/10.1111/lre.12059

    Article  CAS  Google Scholar 

  • Silva, T. F. G., Vincon-Leite, B., Lemaire, B. J., Petrucci, G., Giani, A., Figueredo, C. C., & de O. Nascimento, N. (2019). Impact of urban stormwater runoff on cyanobacteria dynamics in a tropical urban lake. Water.

  • Sinang, S. C., Daud, N., Kamaruddin, N., & Poh, K. B. (2019). Potential growth inhibition of freshwater algae by herbaceous plant extracts. Acta Ecologica Sinica, 39(3), 229–233. https://doi.org/10.1016/j.chnaes.2018.12.005

    Article  Google Scholar 

  • Sinang, S. C., Poh, K. B., Shamsudin, S., & Sinden, A. (2015). Preliminary assessment of cyanobacteria diversity and toxic potential in Ten Freshwater Lakes in Selangor, Malaysia. Bulletin of Environmental Contamination and Toxicology, 95(4), 542–547. https://doi.org/10.1007/s00128-015-1620-7

    Article  CAS  Google Scholar 

  • Smith, V., Wood, S., McBride, C., Atalah, J., & Hamilton, D. (2016). Phosphorus and nitrogen loading restraints are essential for successful eutrophication control of Lake Rotorua, New Zealand. Inland Waters, 6(2), 273–283. https://doi.org/10.5268/IW-6.2.998

  • Steinman, A. D., Isely, E. S., & Thompson, K. (2015). Stormwater runoff to an impaired lake: Impacts and solutions. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4776-z

    Article  Google Scholar 

  • Tamire, G., & Mengistou, S. (2012). Macrophyte species composition, distribution and diversity in relation to some physicochemical factors in the littoral zone of Lake Ziway Ethiopia. African Journal of Ecology, 1–12 https://doi.org/10.1111/aje.12007

  • Tammeorg, O., Horppila, J., Tammeorg, P., Haldna, M., & Niemistö, J. (2016). Internal phosphorus loading across a cascade of three eutrophic basins: A synthesis of short- and long-term studies. Science of the Total Environment, 12https://doi.org/10.1016/j.scitotenv.2016.07.224

  • Thornton, J. A., Harding, W. R., Dent, M., Hart, R. C., Lin, H., Rast, C. L., … Slawski, T. M. (2013). Eutrophication as a “wicked” problem. Lakes and Reservoirs: Research and Management, 18(4), 298–316. https://doi.org/10.1111/lre.12044

  • Verbeek, L., Gall, A., Hillebrand, H., & Striebel, M. (2018). Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biology, 24(10), 4532–4543. https://doi.org/10.1111/gcb.14337

    Article  Google Scholar 

  • Vondracek, B., Koch, J. D., & Beck, M. W. (2014). A comparison of survey methods to evaluate macrophyte index of biotic integrity performance in Minnesota lakes. Ecological Indicators, 36, 178–185. https://doi.org/10.1016/j.ecolind.2013.07.002

    Article  Google Scholar 

  • Wong, C. L., Venneker, R., Uhlenbrook, S., Jamil, A. B. M., & Zhou, Y. (2009). Variability of rainfall in Peninsular Malaysia. Hydrology and Earth System Sciences, 6, 5471–5503. https://doi.org/10.5194/hessd-6-5471-2009

    Article  Google Scholar 

  • Wong, C. L., Yusop, Z., & Ismail, T. (2018). Trend of daily rainfall and temperature in Peninsular Malaysia based on gridded data set. International Journal of GEOMATE, 14(44), 65–72. https://doi.org/10.21660/2018.44.3707

  • Wu, Z., Liu, Y., Liang, Z., Wu, S., & Guo, H. (2017). Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference. Water Research, 116, 231–240. https://doi.org/10.1016/j.watres.2017.03.039

    Article  CAS  Google Scholar 

  • Yang, Y., & Lusk, M. G. (2018). Nutrients in urban stormwater runoff: Current state of the science and potential mitigation options. Current Pollution Reports, 4, 112–127. https://doi.org/10.1007/s40726-018-0087-7

    Article  Google Scholar 

  • Yousry, M. M. (2017). Total and bio-available phosphorus in sediments and its contribution to Lake Nasser eutrophication, Egypt. Egyptian Journal of Aquatic Biology & Fisheries, 21(3), 29–44.

    Article  Google Scholar 

  • Zhang, H., Boegman, L., Scavia, D., & Culver, D. A. (2016). Spatial distributions of external and internal phosphorus loads in Lake Erie and their impacts on phytoplankton and water quality. Journal of Great Lakes Research, 42(6), 1212–1227. https://doi.org/10.1016/j.jglr.2016.09.005

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, W., & Chang, J. (2019a). The contribution of cyanobacteria bloom decline to phosphorus in water column of Dianchi Lake, China. Polish Journal of Environmental Studies, 28(5), 3513–3520. https://doi.org/10.15244/pjoes/94217

  • Zhang, Y., Ma, R., Liang, Q., Guan, B., & Loiselle, S. (2019b). Secondary impacts of eutrophication control activities in shallow lakes: Lessons from aquatic macrophyte dynamics in Lake Taihu from 2000 to 2015. Freshwater Science, 38https://doi.org/10.1086/706197

Download references

Acknowledgements

We would like to thank everyone who was directly or indirectly involved in this research.

Funding

This research was funded by the Malaysia Ministry of Higher Education under Fundamental Research Grant Scheme 2017–0078-101–02 (FRGS/1/2017/STG03/UPSI/02/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Som Cit Sinang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A Rahman, A.R.A., Sinang, S.C. & Nayan, N. Response of algal biomass and macrophyte communities to internal or external nutrient loading. Environ Monit Assess 194, 491 (2022). https://doi.org/10.1007/s10661-022-10116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10116-6

Keywords

Navigation