Abstract
Microcystin (MC) is a toxic secondary metabolite produced by select cyanobacteria that threatens aquatic and terrestrial organisms over a diverse range of freshwater systems. To assess the relationship between environmental parameters and MC, researchers frequently utilize correlational analyses. This statistical methodology has proved useful when summarizing complex water quality monitoring datasets, but the correlations between select parameters and MC have been documented to vary widely across studies and systems. Such variation within the peer-reviewed literature leaves uncertainty for resource managers when developing a MC monitoring program. The objective of this research is to determine if correlational analyses between environmental parameters and MC are helpful to resource managers desiring to understand the drivers of MC. Environmental (i.e., physical, chemical, and biological) and MC correlation data were retrieved from an estimated 2,643 waterbodies (largely from the north temperate region) and synthesized using a Fisher’s z meta-analysis. Common water quality parameters, such as chlorophyll, temperature, and pH, were positively correlated with MC, while transparency was negatively correlated. Interestingly, 12 of the 15 studied nitrogen parameters, including total nitrogen, were not significantly correlated with MC. In contrast, three of the four studied phosphorus parameters, including total phosphorus, were positively related to MC. Results from this synthesis quantitatively reinforces the usefulness of commonly measured environmental parameters to monitor for conditions related to MC occurrence; however, correlational analyses by themselves are often ineffective and considering what role a parameter plays in the ecology of cyanobacterial blooms in addition to MC production is vital.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and material
All data utilized in this study are publicly available. References to the data used in this study can be found in the Appendix A1. It is encouraged that researchers reassess the data sources referenced in this study as these sources may be updated with new data.
Code availability
All code can be found in Appendix A1.
References
Beaulieu, M., Pick, F., & Gregory-Eaves, I. (2013). Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58, 1736–1746. https://doi.org/10.4319/lo.2013.58.5.1736
Beaver, J. R., Manis, E. E., Loftin, K. A., Graham, J. L., Pollard, A. I., & Mitchell, R. M. (2014). Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: A preliminary evaluation. Harmful Algae, 36, 57–62. https://doi.org/10.1016/j.hal.2014.03.005
Billam, M., Tang, L., Cai, Q., Mukhi, S., Guan, H., Wang, P., et al. (2006). Seasonal variations in the concentration of microcystin-LR in two lakes in western Texas, USA. Environmental Toxicology and Chemistry, 25, 349–355. https://doi.org/10.1897/05-158R.1
Bonilla, S., Aubriot, L., Soares, M., Gonzales-Piana, M., Fabre, A., Huszar, V. L., et al. (2012). What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermposis raciborskii? FEMS Microbiology Ecology, 79, 594–607.
Boutte, C., Mankiewicz-Boczek, J., Komarkova, J., Grubisic, S., Izydorczyk, K., Wautelet, F., et al. (2008). Diversity of planktonic cyanobacteria and microcystin occurrence in Polish water bodies investigated using a polyphasic approach. Aquatic Microbial Ecology, 51(3), 223–236. https://doi.org/10.3354/ame01194
Boyd, C. (2015). Water Quality - An Introduction. Springer. https://www.springer.com/us/book/9783319330624
Chorus, I. (1999). Toxic Cyanobacteria in Water - A guide to their public health consequences, monitoring and management. https://www.who.int/publications/m/item/toxic-cyanobacteria-in-water---second-edition
Cook, K. V., Li, C., Cai, H., Krumholz, L. R., Hambright, K. D., Paerl, H. W., et al. (2020). The global Microcystis interactome. Limnology and Oceanography, 65, S194–S207. https://doi.org/10.1002/lno.11361
Crimp, A., Brown, N., & Shilton, A. (2018). Microalgal luxury uptake of phosphorus in waste stabilization ponds – Frequency of occurrence and high performing genera. Water Science and Technology, 78, 1. https://doi.org/10.2166/wst.2017.632
Cuichao, P., Jie, Z., Xiuji, Z., & Shiqiang, W. (2013). Experimental study on the influence of pH value, illumination, nutrient, and temperature factors on cyanobacteria growth. In: 2013 Third International Conference on Intelligent System Design and Engineering Applications (pp. 747–750).
Dignum, M., Matthijs, H., Pel, R., Laanbroek, H., & Mur, L. (1970). Nutrient limitation of freshwater cyanobacteria. pp. 65–86. https://doi.org/10.1007/1-4020-3022-34
Duong, T. T., Le, T. P. Q., Pflugmacher, S., Rochelle-Newall, E., Trung Kien, H., Vu, T., et al. (2013). Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. Journal of Applied Phycology, 25. https://doi.org/10.1007/s10811-012-9919-9
Dziallas, C., & Grossart, H. P. (2011). Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS ONE, 6, e25569. https://doi.org/10.1371/journal.pone.0025569
Environmental Protection Agency (EPA:NLA). (2007). National Lake Assessment. https://www.epa.gov/national-aquatic-resource-surveys/nla. Accessed November 2019.
Environmental Protection Agency (EPA:NLA). (2012). National Lake Assessment. https://www.epa.gov/national-aquatic-resource-surveys/nla. Accessed November 2019.
Fisher, R. (1958). Statistical methods for research workers (13th ed.). Edinburgh Oliver and Body.
Flores, E., & Herrero, A. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions, 33, 164–167. https://doi.org/10.1042/BST0330164
Francy, D. S., Brady, A. M. G., Ecker, C. D., Graham, J. L., Stelzer, E. A., Struffolino, P., et al. (2016). Estimating microcystin levels at recreational sites in western Lake Erie and Ohio. Harmful Algae, 58, 23–34. https://doi.org/10.1016/j.hal.2016.07.003
Gągała, I., Izydorczyk, K., Jurczak, T., Pawełczyk, J., Dziadek, J., Wojtal-Frankiewicz, A., et al. (2014). Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms. Microbial Ecology, 67, 465–479. https://doi.org/10.1007/s00248-013-0303-3
Giani, A., Bird, D., Prairie, Y., & Lawrence, J. F. (2005). Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2100–2109. https://doi.org/10.1139/f05-124
Gilpin, A. R. (1993). Table for conversion of Kendall’s Tau to Spearman’s Rho within the context of measures of magnitude of effect for meta-analysis. Educational and Psychological Measurement, 53, 87–92. https://doi.org/10.1177/0013164493053001007
Gladfelter, M. F., Buley, R. P., Belfiore, A. P., Fernandez-Figueroa, E. G., Gerovac, B. L., Baker, N. D., & Wilson, A. E. (2022). Dissolved nitrogen form mediates phycocyanin content in cyanobacteria. Freshwater Biology, 67, 954–964. https://doi.org/10.1111/fwb.13892
Gobler, C. J., Burkholder, J. M., Davis, T. W., Harke, M. J., Johengen, T., Stow, C. A., & Van de Waal, D. B. (2016). The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae, 54, 87–97. https://doi.org/10.1016/j.hal.2016.01.010
González-Piana, M., Fabián, D., Piccardo, A., & Chalar, G. (2017). Dynamics of total microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. Bulletin of Environmental Contamination and Toxicology, 99, 488–492. https://doi.org/10.1007/s00128-017-2158-7
Graham, J. L., Foster, G. M., Williams, T. J., Kramer, A. R., & Harris, T. D. (2017). Occurrence of cyanobacteria, microcystin, and taste-and-odor compounds in Cheney Reservoir, Kansas, 2001–16. U.S. Geological Survey, Reston, VA. https://doi.org/10.3133/sir20175016
Graham, J. L., Jones, J. R., Jones, S. B., Downing, J. A., & Clevenger, T. E. (2004). Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Research, 38, 4395–4404. https://doi.org/10.1016/j.watres.2004.08.004
Harris, T. D., & Graham, J. L. (2017). Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake and Reservoir Management, 33, 32–48. https://doi.org/10.1080/10402381.2016.1263694
Henao, E., Rzymski, P., & Waters, M. (2020). A review on the study of cyanotoxins in paleolimnological research: Current knowledge and future needs. Toxins, 12(6). https://doi.org/10.3390/toxins12010006
Higgins, J., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. https://handbook-5-1.cochrane.org/. Accessed 26 March 2021.
Holland, A., & Kinnear, S. (2013). Interpreting the possible ecological role(s) of cyanotoxins: Compounds for competitive advantage and/or physiological aide? Faculty of Science, Medicine and Health - Papers: Part A, 2239–2258. https://doi.org/10.3390/md11072239
Horst, G. P., Sarnelle, O., White, J. D., Hamilton, S. K., Kaul, R. B., & Bressie, J. D. (2014). Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Research, 54, 188–198. https://doi.org/10.1016/j.watres.2014.01.063
Hotto, A. M., Satchwell, M. F., Berry, D. L., Gobler, C. J., & Boyer, G. L. (2008). Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake NY. Harmful Algae, 7(5), 671–681. https://doi.org/10.1016/j.hal.2008.02.001
Jančula, D., Straková, L., Sadílek, J., Marsálek, B., & Babica, P. (2014). Survey of cyanobacterial toxins in Czech water reservoirs-the first observation of neurotoxic saxitoxins. Environmental Science and Pollution Research International, 21. https://doi.org/10.1007/s11356-014-2699-9
Jiang, L., & Pu, Z. (2009). Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. The American Naturalist, 174, 651–659. https://doi.org/10.1086/605961
Kaebernick, M., & Neilan, B. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35, 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00782.x
Kasinak, J. M. E., Holt, B. M., Chislock, M. F., & Wilson, A. E. (2015). Benchtop fluorometry of phycocyanin as a rapid approach for estimating cyanobacterial biovolume. Journal of Plankton Research, 37, 248–257. https://doi.org/10.1093/plankt/fbu096
Kim, H., Kim, C., Ahn, T.-S., Yoo, S., & Lee, D. (2005). Effects of temperature and light on microcystin synthetase gene transcription in Microcystis aeruginosa. Key Engineering Materials, 277–279, 606–611. https://doi.org/10.4028/www.scientific.net/KEM.277-279.606
Kotak, B., Lam, A., Prepas, E., & Hrudey, S. (2000). Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1584–1593. https://doi.org/10.1139/cjfas-57-8-1584
Lewis, W. M. (2000). Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 5, 35–48. https://doi.org/10.1046/j.1440-1770.2000.00091.x
Li, D., Zheng, H., Pan, J., Zhang, T., Tang, S., Lu, J., et al. (2017). Seasonal dynamics of photosynthetic activity, Microcystis genotypes and microcystin production in Lake Taihu, China. Journal of Great Lakes Research, 43, 710–716. https://doi.org/10.1016/j.jglr.2017.04.005
Li, S., Xie, P., Xu, J., Zhang, X., Qin, J., Zheng, L., et al. (2007). Factors shaping the pattern of seasonal variations of microcystins in Lake Xingyun, a subtropical plateau lake in China. Bulletin of Environmental Contamination and Toxicology, 78, 226–230. https://doi.org/10.1007/s00128-007-9116-8
Liu, Y., Xie, P., Zhang, D. W., & Wen, Z. R. (2008). Seasonal dynamics of microcystins with associated biotic and abiotic parameters in two bays of Lake Taihu, the third largest freshwater lake in China. Bulletin of Environmental Contamination and Toxicology, 80, 24–29. https://doi.org/10.1007/s00128-007-9293-5
Lyck, S. (2004). Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. Journal of Plankton Research, 26, 727–736. https://doi.org/10.1093/plankt/fbh071
Malbrouck, C., & Kestemont, P. (2006). Effects of microcystins on fish. Environmental Toxicology and Chemistry, 72–86. https://setac.onlinelibrary.wiley.com/doi/full/10.1897/05-029R.1
Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E., Koreivienė, J., et al. (2018). Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins, 10. https://doi.org/10.3390/toxins10040156
Martins, J., & Vasconcelos, V. (2009). Microcystin dynamics in aquatic organisms. Journal of toxicology and environmental health. Part B, Critical Reviews, 12, 65–82. https://doi.org/10.1080/10937400802545151
McQuaid, N., Zamyadi, A., Prévost, M., Bird, D. F., & Dorner, S. (2011). Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring: JEM, 13, 455–463. https://doi.org/10.1039/c0em00163e
Meriluoto, J., Spoof, L., & Geoffrey, O. (2016). Handbook of cyanobacterial monitoring and cyanotoxin analysis. John Wiley & Sons. https://doi.org/10.1002/9781119068761
Mokashi, K., Shetty, V., George, S. A., & Sibi, G. (2016). Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgaris. Achievements in the Life Sciences, 10, 111–117. https://doi.org/10.1016/j.als.2016.05.011
Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 15, 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x
Oberholster, P., & Botha, A. M. (2010). Use of remote sensing and molecular markers to detect toxic cyanobacterial hyperscum crust: A case study on Lake Hartbeespoort, South Africa. African Journal of Biotechnology, 95, 8791–8799. https://doi.org/10.5897/AJB10.1201
Oh, H. M., Lee, S. J., Jang, M. H., & Yoon, B. -D. (2000). Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environmental Microbiology, 66, 176–179. https://doi.org/10.1128/aem.66.1.176-179.2000
Ortega, J. C. G., Figueiredo, B. R. S., Graça, W. J., da Agostinho, A. A., & Bini, L. M. (2020). Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators. Journal of Animal Ecology, 89, 2427–2439. https://doi.org/10.1111/1365-2656.13329
Otten, T. G., Xu, H., Qin, B., Zhu, G., & Paerl, H. W. (2012). Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: Implications for water quality management. Environmental Science & Technology, 46(6), 3480–3488. https://doi.org/10.1021/es2041288
Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal, 1, 76–113. https://doi.org/10.1100/tsw.2001.16
Paerl, H. W., & Huisman, J. (2008). Climate. Blooms like it hot. Science, 320, 57–58. https://doi.org/10.1126/science.1155398
Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: Causes consequences and controls. Microbial Ecology, 65(4), 995–1010. https://doi.org/10.1007/s00248-012-0159-y
Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46, 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002
Park, H. D., Iwami, C., Watanabe, M. F., Harada, K. I., Okino, T., & Hayashi, H. (1998). Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environmental Toxicology and Water Quality, 13, 61–72. https://doi.org/10.1002/(SICI)1098-2256(1998)13:1%3c61::AID-TOX4%3e3.0.CO;2-5
Pick, J., Nakagawa, S., & Noble, D. (2020). Reproducible, flexible and high-throughput data extraction from primary literature: The metaDigitise R package. Biorxiv. https://doi.org/10.1101/247775
Ramírez, A., Caballero, M., Vázquez, G., & Colón-Gaud, C. (2020). Preface: Recent advances in tropical lake research. Hydrobiologia, 847, 4143–4144. https://doi.org/10.1007/s10750-020-04443-3
Rigosi, A., Hanson, P., Hamilton, D. P., Hipsey, M., Rusak, J. A., Bois, J., et al. (2015). Determining the probability of cyanobacterial blooms: The application of Bayesian networks in multiple lake systems. Ecological Applications: A Publication of the Ecological Society of America, 25, 186–199. https://doi.org/10.1890/13-1677.1
Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8, 665–673. https://doi.org/10.1016/j.hal.2008.12.004
Rupinski, M. T., & Dunlap, W. P. (1996). Approximating Pearson product-moment correlations from Kendall’s Tau and Spearman’s Rho. Educational and Psychological Measurement, 56, 419–429. https://doi.org/10.1177/0013164496056003004
Sanz-Luque, E., Bhaya, D., & Grossman, A. R. (2020). Polyphosphate: A multifunctional metabolite in cyanobacteria and algae. Frontiers in Plant Science, 11, 938. https://doi.org/10.3389/fpls.2020.00938
Scherer, P. I., Raeder, U., Geist J., & Zwirglmaier, K. (2016). Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa. MicrobiologyOpen, 6. https://doi.org/10.1002/mbo3.393
Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science (New York, N.Y.), 184, 897–899. https://doi.org/10.1126/science.184.4139.897
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105, 11254–11258. https://doi.org/10.1073/pnas.0805108105
Scott, J. T., McCarthy, M. J., & Paerl, H. W. (2019). Nitrogen transformations differently affect nutrient limited primary production in lakes of varying trophic state. Limnology and Oceanography Letters, 4(4), 96–104.
Sivonen, K. (2009). Cyanobacterial toxins. In Encyclopedia of microbiology (pp. 290–307).
Song, L., Sano, T., Li, R., Watanabe, M. M., Liu, Y., & Kaya, K. (1998). Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological Research, 46, 19–23. https://doi.org/10.1046/j.1440-1835.1998.00120.x
Swift, T. J., Perez-Losada, J., Schladow, S. G., Reuter, J. E., Jassby, A. D., & Goldman, C. R. (2006). Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Sciences, 68, 1–15. https://doi.org/10.1007/s00027-005-0798-x
Tessarolli, L. P., Bagatini, I. L., Bianchini-Jr, I., Vieira, A., a. H., Tessarolli, L. P., Bagatini, I. L., et al. (2018). Bacterial degradation of dissolved organic matter released by Planktothrix agardhii (Cyanobacteria). Brazilian Journal of Biology, 78, 108–116. https://doi.org/10.1590/1519-6984.07616
United States Geological Survey (USGS). (2018). National Water Information Systems. https://waterdata.usgs.gov/nwis
Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J., & Sivonen, K. (2002). Effect of nitrogen and phosphorus on growth of toxic and montoxic Microcystis Strains and on Intracellular Microcystin Concentrations. Microbial Ecology, 43, 443–454. https://doi.org/10.1007/s00248-001-0041-9
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. https://doi.org/10.18637/jss.v036.i03
Wagner, N. D., Osburn, F. S., Wang, J., Taylor, R. B., Boedecker, A. R., Chambliss, C. K., Brooks, B. W., & Scott, J. T. (2019). Biological stoichiometry regulates toxin production in Microcystis aeruginosa (UTEX 2385). Toxins., 11(10), 601. https://doi.org/10.3390/toxins11100601
Watanabe, M. F., Harada, K. I., Matsuura, K., Watanabe, M., & Suzuki, M. (1989). Heptapeptide toxin production during the batch culture of two Microcystis species (Cyanobacteria). Journal of Applied Phycology, 1, 161–165. https://doi.org/10.1007/BF00003879
Watanabe, M. F., & Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49, 1342–1344. https://doi.org/10.1128/aem.49.5.1342-1344.1985
Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E., & Hill, G. E. (2018). Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nature Communications, 9, 73. https://doi.org/10.1038/s41467-017-02649-z
Wiedner, C., Visser, P. M., Fastner, J., Metcalf, J. S., Codd, G. A., & Mur, L. R. (2003). Effects of light on the microcystin content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69, 1475–1481. https://doi.org/10.1128/AEM.69.3.1475-1481.2003
Wilhelm, S. W., Farnsley, S. E., LeCleir, G. R., Layton, A. C., Satchwell, M. F., DeBruyn, J. M., et al. (2011). The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae, 10, 207–215. https://doi.org/10.1016/j.hal.2010.10.001
Wilson, A. E., Wilson, W. A., & Hay, M. E. (2006). Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 72, 7386–7389. https://doi.org/10.1128/AEM.00834-06
World Health Organization (WHO). (2020). Background documents for development of WHO guidelines for drinking-water quality and guidelines for safe recreational water environments. https://www.who.int/publications/m/item/background-documents-for-development-of-who-guidelines-for-drinking-water-quality-and-guidelines-for-safe-recreational-water-environments. Accessed 30 March 2021.
Wu, S., Wang, S., Yang, H., Xie, P., Ni, L., & Xu, J. (2008). Field studies on the environmental factors in controlling microcystin production in the subtropical shallow lakes of the Yangtze river. Bulletin of Environmental Contamination and Toxicology, 80, 329–334. https://doi.org/10.1007/s00128-008-9378-9
Wu, S. K., Xie, P., Liang, G. D., Wang, S. B., & Liang, X. M. (2006). Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. Freshwater Biology, 51, 2309–2319. https://doi.org/10.1111/j.1365-2427.2006.01652.x
Xu, C., Chen, J. A., Huang, Y. J., Qiu, Z. Q., Luo, J. H., Zeng, H., et al. (2011). Identification of microcystins contamination in surface water samples from the Three Gorges Reservoir, China. Environmental Monitoring and Assessment, 180, 77–86. https://doi.org/10.1007/s10661-010-1773-0
Xue, Q., Rediske, R. R., Gong, Z., Su, X., Xu, H., Cai, Y., et al. (2018). Spatio-temporal variation of microcystins and its relationship to biotic and abiotic factors in Hongze Lake, China. Journal of Great Lakes Research, 44, 253–262. https://doi.org/10.1016/j.jglr.2017.12.004
Xue, Q., Steinman, A. D., Su, X., Zhao, Y., & Xie, L. (2016). Temporal dynamics of microcystins in Limnodrilus hoffmeisteri, a dominant oligochaete of hypereutrophic Lake Taihu, China. Environmental Pollution, 213, 585–593. https://doi.org/10.1016/j.envpol.2016.03.043
Yen, H. K., Lin, T. F., & Tseng, I. C. (2012). Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant. Journal of Environmental Monitoring: JEM, 14, 687–696. https://doi.org/10.1039/c1em10389j
Yinxia, L., Bibo, L., Shuaixia, L., & Dunhai, L. (2017). The trophic state of lake water regulates spatial-temporal variations of bloom-forming Microcystis. Chinese Journal of Oceanology and Limnology, 35, 415–422. https://doi.org/10.1007/s00343-016-5266-z
Zhang, S., Wang, W., Zhang, K., Xu, P., & Lu, Y. (2018). Phosphorus release from cyanobacterial blooms during their decline period in eutrophic Dianchi Lake China. Environmental Science and Pollution Research., 25, 13579–13588. https://doi.org/10.1007/s11356-018-1517-1
Zheng, L., Xie, P., Li, Y. L., Yang, H., Wang, S. B., & Guo, N. C. (2004). Variation of intracellular and extracellular microcystins in a shallow, hypereutrophic subtropical Chinese lake with dense cyanobacterial blooms. Bulletin of Environmental Contamination and Toxicology, 73, 698–706. https://doi.org/10.1007/s00128-004-0482-1
Znachor, P., & Nedoma, J. (2010). Importance of dissolved organic carbon for phytoplankton nutrition in a eutrophic reservoir. Journal of Plankton Research, 32, 367–376. https://doi.org/10.1093/plankt/fbp129
Acknowledgements
The authors thank the anonymous reviewers who have helped strengthen this study. The authors also thank the helpful comments provided by individuals in the Meta-analysis course at Auburn University taught by AEW.
Funding
This project was supported by a grant from the National Science Foundation (DEB-1831094), two USDA grants (2017–70007-27132 and 58–6010-0–006), the Alabama Agricultural Experiment Station, and the Hatch program of the National Institute of Food and Agriculture (ALA016-1–16007), U.S. Department of Agriculture.
Author information
Authors and Affiliations
Contributions
All authors have contributed to the research, preparation, and writing of this article.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Buley, R.P., Gladfelter, M.F., Fernandez-Figueroa, E.G. et al. Can correlational analyses help determine the drivers of microcystin occurrence in freshwater ecosystems? A meta-analysis of microcystin and associated water quality parameters. Environ Monit Assess 194, 493 (2022). https://doi.org/10.1007/s10661-022-10114-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-022-10114-8