Skip to main content

Advertisement

Log in

Copper chloride (II) effect on the composition and structure of marine microphytobenthic communities

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To assess the temporary effects of the increased copper ion inflow on estuarine microphytobenthic communities, ecotoxicological tests were conducted using natural microphytobenthic assemblages obtained from an artificial substratum exposed to the waters of the southern Baltic Sea (Gulf of Gdańsk). The applied copper ion concentrations reflected permitted copper values established for waters of a good ecological status (2·10–5 g Cu·dm−3), and the maximum copper concentrations which, according to the current environmental regulations, are allowed to be discharged into the environment (2·10–3 g Cu·dm−3).

In the studied communities, diverse responses of single species to CuCl2 exposure were recorded, including both growth inhibition and stimulatory effects as well. Despite the shift in the community composition and structure, total cell number remained at a similar level. The results of our investigations suggest that microphytobenthic assemblages are resistant to CuCl2 which is facilitated by the shift in the community composition resulting from the increasing cell number of copper tolerant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Andersson, S., & Kautsky, L. (1996). Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Marine Biology, 125, 171–176. https://doi.org/10.1007/BF00350771

    Article  CAS  Google Scholar 

  • Arrhenius, Å., Backhaus, T., Hilvarsson, A., Wendt, I., Zgrundo, A., & Blanck, H. (2014). A novel bioassay forevaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms. Marine Pollution Bulletin. https://doi.org/10.7287/peerj.preprints.240v3

    Article  Google Scholar 

  • Bakierowska, A., Wojtaszek, A., Kopiec, J., & Research Team. (2020). Assessment of the state of the environment of the Polish maritime areas of the Baltic Sea based on 2019 monitoring data against the background of the decade 2009–2018 (in Polish). (red. Zalewska T., Kraśniewski W.) Inspekcja Ochrony Środowiska Warszawa. (accessed on 8 Dec 2021).  https://www.gios.gov.pl/images/dokumenty/pms/monitoring_wod/ocena_stanu_2019_2009-2018.pdf

  • Charles, D. F., Kelly, M. G., Stevenson, R. J., Poikane, S., Theroux, S., Zgrundo, A., & Cantonati, M. (2020). Benthic algae assessments in the EU and the US: Striving for consistency in the face of great ecological diversity. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.107082

    Article  Google Scholar 

  • Cid, A., Herrero, C., Torres, E., & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: Effects on photosynthesis and related parameters. Aquatic Toxicology, 31(2), 165–174. https://doi.org/10.1016/0166-445X(94)00071-W

    Article  CAS  Google Scholar 

  • Clements, H., & Newman, C. (2002). Application of multimetric and multivariate approaches in community ecotoxicology. Community Ecotoxicology (Hierarchical Ecotoxicology Mini series), 141–166.

  • Connolly, N. M., Crossland, M. R., & Pearson, R. G. (2004). Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society, 23(2), 251–270.

    Article  Google Scholar 

  • Fernandes, J. C., & Henriques, F. S. (1991). Biochemical, physiological, and structural effects of excess copper in plants. Botanical Review, 57, 246–273. https://doi.org/10.1007/BF02858564

    Article  Google Scholar 

  • Guasch, H., Paulsson, M., & Sabater, S. (2002). Effect of copper on algal communities from oligotrophic calcareous streams. Journal of Phycology, 38, 241–243. https://doi.org/10.1046/j.1529-8817.2002.01114.x

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731–739. https://doi.org/10.1016/S0045-6535(99)00445-2

    Article  Google Scholar 

  • Kaniuczak, J., & Augustyn, Ł. (2011). The concentration of metal ions in surface waters for human consumption (in Polish). Inżynieria Ekologiczna, 27, 33–45.

    Google Scholar 

  • Kierzkowski, D. J., Puetz, J. D, & Wei, G. U. S. (2000). Patent No. 6,069,113. Washington, DC: U.S. Patent and Trademark Office.

  • Lange-Bertalot, H., Witkowski, A., Bogaczewicz-Adamczak, B., & Zgrundo, A. (2003). Rare and new small-celled taxa of Naviculas s. str. in the Gulf of Gdansk and in its freshwater affluents. Limnologica, 33, 258–270. https://doi.org/10.1016/S0075-9511(03)80021-X

    Article  Google Scholar 

  • Latała, A., & Nędzi, S. P. (2009). Toxity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chemistry, 11, 1371–1376. https://doi.org/10.1039/B901887E

    Article  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge University Press. Cambridge. ISBN 0521891086. 277.

  • Levy, J. L., Stauber, J. L., & Jolley, D. F. (2007). Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 387(1), 141–154. https://doi.org/10.1007/S00244-002-2024-3

  • Majewska, R., Zgrundo, A., Lemke, P., & De Stefano, M. (2012). Benthic diatoms of the Vistula River estuary (Northern Poland) – Seasonality, substrata preferences and the influence of water chemistry. Phycological Research 60(1):1–19. https://doi.org/10.1515/ohs-2017-0034

  • Maksymiec, W., & Krupa, Z. (2006). The effects of short–term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environmental and Experimental Botany, 57(1), 187–194. https://doi.org/10.1016/j.envexpbot.2005.05.006

    Article  CAS  Google Scholar 

  • Manimaran, K., Karthikeyan, P., Ashokkumar, S., Prabu, V. A., & Sampathkumar, P. (2012). Effect of copper on growth and enzyme activities of marine diatom Odontella mobiliensis. Bulletin of Environmental Contamination and Toxicology, 88(1), 30–37. https://doi.org/10.1007/s00128-011-0427-4

    Article  CAS  Google Scholar 

  • Masmoudi, S., Nguyen-Deroche, N., Caruso, A., Ayadi, H., Morant-Manceau, A., & Tremblin, G. (2013). Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell — a review. Cryptogamie, Algologie, 34(2), 185–225. https://doi.org/10.7872/crya.v34.iss2.2013.185

  • Morelli, E., & Scarano, G. (2004). Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Science, 167(2), 289–296. https://doi.org/10.1016/j.plantsci.2004.04.001

    Article  CAS  Google Scholar 

  • OECD. (2011). Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test, OECD Publishing, Paris. https://doi.org/10.1787/9789264069923-en

  • Peterson, H. G., Boutin, C., Martin, P. A., Freemark, K. E., Ruecker, N. J., & Moody, M. J. (1994). Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquatic Toxicology, 28(3–4), 275–292. https://doi.org/10.1016/S0166-445X(97)00022-2

    Article  CAS  Google Scholar 

  • Pinto, J., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

    Article  CAS  Google Scholar 

  • Pliński, M., & Komárek, J. (2007). Cyanoprokaryota with the English key for the identification to the genus. Flora of the Gulf of Gdańsk and adjacent waters (the southern Baltic Sea)(in Polish). Wydawnictwo Uniwersytetu Gdańskiego. Gdańsk, 172,  pp. ISBN 978–83–7326–437–3.

  • Pliński. M., & Hindák, F. (2010). Green Algae with the English key for the identification to the genus. Flora of the Gulf of Gdańsk and adjacent waters (the southern Baltic Sea)(in Polish). Wydawnictwo Uniwersytetu Gdańskiego. Gdańsk, 172 pp. ISBN 978–83–7326–437–3.

  • Pniewski F (2015) unpublished.

  • Rosenberg, M., Kulkarni, G. V., Bosy, A., & McCulloch, C. A. G. (1991). Reproducibility and sensitivity of oral malodor measurements with a portable sulphide monitor. Journal of Dental Research, 70(11), 1436–1440.

    Article  CAS  Google Scholar 

  • Sabater, S., Guasch, H., Romani, A., & Munoz, I. (2002). The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 469, 149–156. https://doi.org/10.1023/A:1015549404082

    Article  CAS  Google Scholar 

  • Serra, A., Guasch, H., Admiraal, W., Van der Geest, H. G., & Van Beusekom, S. A. M. (2010). Influence of phosphorus on copper sensitivity of fluvial periphyton: The role of chemical, physiological and community-related factors. Ecotoxicology, 19(4), 770–780.

    Article  CAS  Google Scholar 

  • Serwatka, M., Zgrundo, A., Sylwestrzak, Z., & Śliwińska, S. (2015). Effect of CuCl2 on growth and motility of the marine diatom Cylindrotheca closterium (Ehremberg) Lewin and Reimann. European Journal of Phycology, 50(1), 170–170.

    Google Scholar 

  • Snoeijs, P., & Potapova, M. (1993). Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press. Uppsala., 1, 129.

    Google Scholar 

  • Snoeijs, P., & Vilbaste, S. (1994). Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press. Uppsala., 2, 126.

    Google Scholar 

  • Snoeijs, P., & Potapova, M. (1995). Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press. Uppsala., 3, 126.

    Google Scholar 

  • Snoeijs, P., & Kasperovičiene, J. (1996). Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press. Uppsala., 4, 126.

    Google Scholar 

  • Snoeijs, P., & Balashova, N. (1998). Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press. Uppsala., 5, 127.

    Google Scholar 

  • Stauber, J. L., & Florence, T. M. (1987). Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology, 94(4), 511–519. https://doi.org/10.1007/BF00431397

    Article  CAS  Google Scholar 

  • Sylwestrzak, Z., Zgrundo, A., & Latała, A. (2015). Effects of ionic liquid [BMIM]Cl on the Baltic diatom Navicula ramosissma (C. Agardh) Cleve in a laboratory experiment on natural microphytobenthos communities of the Gulf of Gdansk (in Polish). Zagadnienia aktualnie poruszane przez młodych naukowców cz.3. ISBN: 978–83–63058–50–0.

  • Sylwestrzak, Z., Zgrundo, A., & Pniewski, F. (2021). Ecotoxicological studies on the effect of Roundup®(Glyphosate Formulation) on marine benthic microalgae. International Journal of Environmental Research and Public Health, 18(3), 884.

    Article  CAS  Google Scholar 

  • Szefer, P., Glasby, G. P., Geldon, J., Renner, R. M., Björn, E., Snell, J., & Warzocha, J. (2009). Heavy-metal pollution of sediments from the Polish exclusive economic zone, southern Baltic Sea. Environmental Geology, 57(4), 847–862. https://doi.org/10.1007/s00254-008-1364-3

    Article  CAS  Google Scholar 

  • Śliwińska, S., Sylwestrzak, Z., Zgrundo, A., Pniewski, F., & Latała, A. (2016). The effects of allelochemicals and selected anthropogenic substances on the diatom Bacillaria paxillifera. Edukacja Biologiczna i Środowiskowa 1/2016. ISSN, 1643–8779, 23–30.

    Google Scholar 

  • Ter Braak C. J. F., & Šmilauer, P. (2003). Program CANOCO, version 4.52. Biometris: Quantitative methods in the life and earth sciences. Plant Research International. Wageningen University and Research Centre. The Netherlands, p. 496.

  • Ustaw, D., & Polskiej, R. (2019). Item 2149. Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of the ecological state, ecological potential and chemical state and the method of classification of the state of surface water bodies, as well as environmental quality standards for priority substances. Accessed 8 Dec 2021. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190002149/O/D20192149.pdf

  • Utermöhl, H. (1958). Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik Mitteilungen Internationale Vereinigung Theoretische Und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Witkowski, A., Lange-Bertalot. H., Metzeltin, D. (2000). Diatom flora of marine coasts I, A.R.G. Gantner Verlag K.G, Königstein, p. 925.

  • Yu, Y., Kong, F., Wang, M., Qian, L., & Shi, X. (2007). Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicology and Environmental Safety, 66(1), 49–56. https://doi.org/10.1016/j.ecoenv.2005.10.014

    Article  CAS  Google Scholar 

  • Zgrundo, A., Dziengo-Czaja, M., Bubak, I., Bogaczewicz-Adamczak, B. (2008). Studies on the biodiversity of contemporary diatom assemblages in the Gulf of Gdańsk, Oceanological and Hydrobiological Studies, Vol. XXXVII, Suppl. ISSN 1730–413X, 1–15.

  • Zgrundo, A., Sylwestrzak, Z., & Pniewski, F. (2017). Effects of copper chloride (II), glyphosate and ionic liquid on mixed algal cultures. Phycologia, 56(4 supplement), 207.

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Professor Adam Latała for his valuable suggestions during the development of this research work.

Funding

This research was funded by a Research Project for Young Scientists from the Faculty of Oceanography and Geography, University of Gdańsk (No. 538-G245-B209-16).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZS, AZ, and FP; methodology, ZS, AZ, and FP; software, ZS; validation, ZS, AZ, and FP; formal analysis, ZS, AZ, and FP; investigation, ZS; resources, ZS and AZ; writing — original draft preparation, ZS, AZ, and FP; writing — review and editing, ZS, AZ, and FP; visualization, ZS; supervision, AZ; project administration, ZS; funding acquisition, ZS and AZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zuzanna Sylwestrzak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Algae assemblages in the high CuCl2 concentration change their structure.

• High concentration CuCl2 does not decrease growth assemblages.

• Tested taxa have higher resistance in assemblages than tested particular species.

Appendices

Appendix 1. List of taxa

 

Taxa

Author

Bacillariophyta

Achnanthes adnata

Bory

Achnanthes lemmermannii

Hustedt

Amphora pediculus

(Kützing) Grunow

Amphora sp.

Kützing

Bacillaria paxillifera

(O.F. Müller) T. Marsson

Brebissonia lanceolata

(C. Agardh) R.K. Mahoney and Reimer

Cocconeis pediculus

Ehrenberg

Cyclotella sp.

(F.T. Kützing) A. de Brébisson

Cylindrotheca closterium

(Ehrenberg) Reimann and J.C. Lewin

Diatoma moniliformis

(Kützing) D.M. Williams

Diploneis didyma

(Ehrenberg) Ehrenberg

Diploneis interrupta

(Kützing) Cleve

Entomoneis paludosa

(W. Smith) Reimer

Epithema sp.

Kützing

Fallacia sp.

Kütz

Gomphonema olivacea

(Hornemann) Rabenhorst

Grammatophora marina

(Lyngbye) Kützing

Halamphora coffeiformis

(C. Agardh) Mereschkowsky

Licmophora gracilis

(Ehrenberg) Grunow

Melosira moniliformis

C. Agardh

Melosira nummuloides

C. Agardh

Navicula gregaria

Donkin

Navicula meniscus

Schumann

Navicula palpebralis

Brébisson ex W. Smith

Navicula perminuta

Grunow

Navicula ramosissima

(C. Agardh) Cleve

Nitzschia dissipata

(Kützing) Rabenhorst

Pleurosigma sp.

W. Smith

Proschkinia poretzkajae

(Koretkevich) D.G. Mann

Rhoicosphenia abbreviata

(C. Agardh) Lange-Bertalot

Rhopalodia gibba

(Ehrenberg) O. Müller

Surirella brebissonii

Krammer and Lange-Bertalot

Tabularia fasciculata

(C. Agardh) D.M. Williams and Round

Cyanobacteria

Dolichospermum flosaquae

(Brébisson ex Bornet and Flahault) P. Wacklin, L. Hoffmann and J. Komárek

Merismopedia sp.

(Turpin) Meneghini

Nodularia sp.

Mertens ex Bornet and Flahault

Spirulina subsalsa

Oersted ex Gomont

Chlorophyta

Pseudopediastrum boryanum

(Turpin) E. Hegewald

Scenedesmus sp.

Meyen

Appendix 2. Table with the abundance of all species

Taxa

K_0

K_3

K_7

2·10–5 _3

2·10–5 _7

2·10–3 _3

2·10–3 _7

Achnanthes adnata

700

667

933

323

818

900

600

Achnanthes lemmermanni

0

1500

0

0

0

0

0

Halamphora coffeiformis

592

1250

217

1158

492

1575

567

Amphora pediculus

15

0

0

200

0

50

0

Amphora sp.

150

0

0

0

0

0

200

Dolichospermum flosaquae

31

29

0

27

78

21

15

Bacillaria paxillifera

9383

9350

9367

9583

6713

7450

7817

Brebissonia lanceolata

25

50

  

125

 

50

Cocconeis pediculus

0

0

0

0

190

50

100

Cyclotella sp.

0

50

0

50

0

0

0

Diatoma moniliformis

4533

5650

4833

6250

3500

5208

5867

Diploneis didyma

25

  

50

123

  

Diploneis interrupta

0

0

0

50

0

50

50

Entomoneis paludosa

342

383

133

325

48

267

75

Epithema sp.

 

100

   

50

100

Fallacia sp.

      

200

Tabularia fasciculata

13,992

12,158

10,350

6350

6472

6975

7867

Gomphonema olivaceum

50

50

75

50

0

200

175

Grammatophora marina

833

175

233

533

508

750

617

Licmophora gracilis

733

833

567

700

820

658

650

Melosira moniliformis

165

400

200

100

0

283

0

Melosira nummuloides

4325

2050

3083

1683

3006

2492

2250

Merismopedia sp.

150

2025

0

4325

200

1608

0

Navicula gregaria

913

825

783

700

1309

875

750

Navicula meniscus

50

100

150

100

0

100

0

Navicula palpebralis

0

0

0

50

0

0

0

Navicula perminuta

2050

1225

983

1067

1471

1050

1550

Navicula ramosissima

400

150

50

467

145

125

350

Nitzschia closterium

450

133

100

0

0

100

0

Nitzschia dissipata

67

50

75

50

0

92

0

Nodularia sp.

0

15

0

0

0

38

0

Pediastrum sp.

0

100

0

50

0

0

0

Pleurosigma sp.

175

125

75

50

298

0

50

Proshkinia porotzkaje

67

175

0

100

174

238

75

Rhoicosphenia abbreviata

192

183

150

475

300

667

338

Rhopalodia gibba

0

150

0

0

0

300

0

Rhopalodia brebissonii

738

483

250

517

609

750

400

Scenedesmus sp.

100

400

300

325

380

692

500

Spirulina subsalsa

11

242

10

155

7

290

6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylwestrzak, Z., Zgrundo, A. & Pniewski, F. Copper chloride (II) effect on the composition and structure of marine microphytobenthic communities. Environ Monit Assess 194, 443 (2022). https://doi.org/10.1007/s10661-022-10106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10106-8

Keywords

Navigation