Skip to main content
Log in

Contamination and ecological risk assessment of toxic metals in Awetu watershed stream waters and sediments, Ethiopia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study analyzed the contamination level and ecological risk assessment of toxic metals Awetu watershed streams. A total of 20 water and 20 sediment samples were collected and analyzed for the toxic metals of Arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn). Sediment samples showed severe contamination levels based on ranges in sediment quality guidelines (SQGs). Water samples showed high grades of contamination factor and potential ecological risk factor by toxic metals. The synergistic effects of toxic metals in the sampling sites were evaluated by Nemerow pollution index, potential ecological risk index and modified degree of contamination and were found to have similar results. Dololo stream (D1, D2, D3, and D4) and Kito (K1, K2, and K3) were found at ‘toxic’ contamination and ‘severe’ ecological risk. Cd, Mn, Ni, Pb, and Sn contributed to the highest ecological risk. Toxic metal contamination in Dololo stream is attributed to institutions carrying out various anthropogenic activities along the stream bank, including traditional metal plating, garages, laboratory effluents, extensive agriculture, carwash, irresponsible waste disposal, and urban population growth. The result shows Awetu watershed streams are seriously contaminated by toxic metals. Therefore, future pollution control and management plans should accentuate the strict regulation of discharge of wastes from these anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

The datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Adebiyi, F., & Ezeh, G. (2015). Trace elements in particulate matter of ambient air at petroleum filling stations, (May 2019). https://doi.org/10.1080/02772248.2015.1071377

  • Adela, Y., Ambelu, A., & Tessema, D. A. (2012). Occupational lead exposure among automotive garage workers – A case study for Jimma town, Ethiopia, 2–9.

  • Ahmed, M. K., Ahamed, S., & Rahman, S. (2009). Heavy metals concentration in water, sediments and their bioaccumulations in some freshwater fishes and mussel in Dhaleshwari River. Bangladesh. Terrestrial and Aquatic Environmental Toxicology, 3(1), 33–41. https://doi.org/10.1002/rcs.1710

    Article  Google Scholar 

  • Altan, M., Ayyildiz, Ö., Malkoç, S., Yazici, B., & Koparal, S. (2016). Heavy metal distribution map in soil by using GIS techniques heavy metal distribution map in soil by using GIS techniques, 5(January 2011), 14–20.

  • Ambelu, A., Lock, K., & Goethals, P. L. M. (2013). Hydrological and anthropogenic influence in the Gilgel Gibe I reservoir (Ethiopia) on macroinvertebrate assemblages. Lake and Reservoir Management, 29(3), 143–150. https://doi.org/10.1080/10402381.2013.806971

    Article  CAS  Google Scholar 

  • ANZECC, & ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality the guidelines Australian and New Zealand environment and conservation council agriculture and resource management council of Australia and New Zealand. National Water Quality Management Strategy, 1(4), 314. http://www.dofa.gov.au/infoaccess/

  • Baran, A., Tarnawski, M., & Koniarz, T. (2016). Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environmental Science and Pollution Research, 17255–17268. https://doi.org/10.1007/s11356-016-6678-1

  • Başyiğit, B., & Tekin-özan, S. (2013). Concentrations of some heavy metals in water, sediment, and tissues of pikeperch (Sander lucioperca ) from Karataş lake related to physico-chemical parameters, fish size, and seasons, 22(3), 633–644.

  • Benson, N. U., Asuquo, F. E., Williams, A. B., Essien, J. P., Ekong, C. I., Akpabio, O., & Olajire, A. A. (2016). Source evaluation and trace metal contamination in benthic sediments from equatorial ecosystems using multivariate statistical techniques. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0156485

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187(5). https://doi.org/10.1007/s10661-015-4563-x

  • CCME. (1999). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment, Winnipeg, Canada. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/. Accessed 25 May 2019.

  • CCME. (2007). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table. Canadian Council of Ministers of the Environment, Canada. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/. Accessed 26 May 2019.

  • Cheng, Q., Wang, W., Wang, H., Ang, W., & Zhao, Z. (2012). Investigation of the heavy metal contamination of the sediments from the Yellow River Wetland Nature Reserve of Zhengzhou. China. Iranian Journal of Public Health, 41(3), 26–35.

    CAS  Google Scholar 

  • Deneke, I. (2007). Assessment of drinking water quality and pollution profiles along Awetu stream (Jimma) [M.S. thesis], Addis Ababa University, Addis Ababa, Ethiopia. 

  • Dir, L., Pakhtunkhwa, K., Ahmad, K., Azizullah, A., & Shama, S. (2014). Determination of heavy metal contents in water, sediments, and fish tissues of Shizothorax plagiostomus in river Panjkora, 7357–7366. https://doi.org/10.1007/s10661-014-3932-1

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  Google Scholar 

  • El Nemr, A., Hassaan, M. A., & Madkour, F. F. (2016). Environmental Assessment of Heavy Metal Pollution and Human Health Risk. American Journal of Water Science and Engineering, 2(3), 14–19. https://doi.org/10.11648/j.ajwse.20160203.11

  • EPA. (2007). Operating procedure, (200), 1–10. https://doi.org/10.1007/SpringerReference_11239

  • Getahun, T., Mengistie, E., Haddis, A., Wasie, F., Alemayehu, E., Dadi, D., et al. (2012). Municipal solid waste generation in growing urban areas in Africa: Current practices and relation to socioeconomic factors in Jimma. Ethiopia. Environmental Monitoring and Assessment, 184(10), 6337–6345. https://doi.org/10.1007/s10661-011-2423-x

    Article  CAS  Google Scholar 

  • Getaneh, Z., Mekonen, S., & Ambelu, A. (2014). Exposure and health risk assessment of lead in communities of Jimma town, southwestern Ethiopia. Bulletin of Environmental Contamination and Toxicology, 93(2), 245–250. https://doi.org/10.1007/s00128-014-1293-7

    Article  CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Assessment of human health risk for heavy metals in fish and shrimp collected from Subarnarekha river, India. International Journal of Environmental Health Research, 24(5), 429–449. https://doi.org/10.1080/09603123.2013.857391

    Article  CAS  Google Scholar 

  • González-Merizalde, M. V., Menezes-Filho, J. A., Cruz-Erazo, C. T., Bermeo-Flores, S. A., Sánchez-Castillo, M. O., Hernández-Bonilla, D., & Mora, A. (2016). Manganese and mercury levels in water, sediments, and children living near gold-mining areas of the Nangaritza River Basin, Ecuadorian Amazon. Archives of Environmental Contamination and Toxicology, 71(2), 171–182. https://doi.org/10.1007/s00244-016-0285-5

    Article  CAS  Google Scholar 

  • Gupta, A., Rai, D. K., Pandey, R. S., & Sharma, B. (2009). Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environmental Monitoring and Assessment, 157(1–4), 449–458. https://doi.org/10.1007/s10661-008-0547-4

    Article  CAS  Google Scholar 

  • Haddis, A., Getahun, T., Mengistie, E., Jemal, A., Smets, I., & Van der Bruggen, B. (2014). Challenges to surface water quality in mid-sized African cities: Conclusions from Awetu-Kito Rivers in Jimma, south-west Ethiopia. Water and Environment Journal, 28(2), 173–182. https://doi.org/10.1111/wej.12021

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

  • He, L., Gao, B., Luo, X., Jiao, J., Qin, H., Zhang, C., & Dong, Y. (2018). Health risk assessment of heavy metals in surface water near a uranium tailing pond in Jiangxi Province, South China. Sustainability (Switzerland), 10(4). https://doi.org/10.3390/su10041113

  • Islam, F., Rahman, M., Khan, S. S. A., Ahmed, B., Bakar, A., & Halder, M. (2013). Heavy metals in water, sediment and some fishes of Karnofuly river. Bangladesh. Pollution Research, 32(4), 715–721. https://doi.org/10.22059/IJER.2010.24

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., & Habibullah -Al- Mamun, M., & Islam, M. K. (2015a). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016

    Article  CAS  Google Scholar 

  • Islam, S., Ahmed, K., & Raknuzzaman, M. (2015b). Heavy metal pollution in surface water and sediment : A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016

    Article  CAS  Google Scholar 

  • Jiang, Z., Xu, N., Liu, B., Zhou, L., Wang, J., Wang, C., et al. (2018). Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi. Southeast China. Ecotoxicology and Environmental Safety, 157(March), 1–8. https://doi.org/10.1016/j.ecoenv.2018.03.078

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Monavari, S. M., Nabi Bidhendi, G. R., Nouri, J., & Nematpour, K. (2008). Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147(1–3), 107–116. https://doi.org/10.1007/s10661-007-0102-8

    Article  CAS  Google Scholar 

  • Khan, M. Z. H., Hasan, M. R., Khan, M., Aktar, S., & Fatema, K. (2017). Distribution of heavy metals in surface sediments of the bay of Bengal coast. Journal of Toxicology. https://doi.org/10.1155/2017/9235764

    Article  Google Scholar 

  • Lin, Q., Liu, E., Zhang, E., Li, K., & Shen, J. (2016). Catena Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. CATENA, 145, 193–203. https://doi.org/10.1016/j.catena.2016.06.003

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/BF02472006

    Article  Google Scholar 

  • Lu, S., Wang, Y., Teng, Y., & Yu, X. (2015). Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Environmental Monitoring and Assessment, 187(10). https://doi.org/10.1007/s10661-015-4835-5

  • Lundy, L., Alves, L., Revitt, M., & Wildeboer, D. (2017). Metal water-sediment interactions and impacts on an urban ecosystem. International Journal of Environmental Research and Public Health, 14(7). https://doi.org/10.3390/ijerph14070722

  • Matta, G., & Gjyli, L. (2016). Mercury, lead and arsenic: Impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences, 9(2), 718–725.

    CAS  Google Scholar 

  • Montalvo, C., Aguilar, C. A., Amador, L. E., Ceron, J. G., Ceron, R. M., Anguebes, F., & Cordova, A. V. (2014). Metal contents in sediments (Cd, Cu, Mg, Fe, Mn) as indicators of pollution of Palizada River. Mexico. Environment and Pollution, 3(4), 89–98. https://doi.org/10.5539/ep.v3n4p89

    Article  CAS  Google Scholar 

  • Moore, F., Esmaeili, K., & Keshavarzi, B. (2011). Assessment of heavy metals contamination in stream water and sediments affected by the Sungun porphyry copper deposit. East Azerbaijan Province, Northwest Iran. https://doi.org/10.1007/s12403-011-0042-y

    Article  Google Scholar 

  • Nawab, J., Khan, S., & Xiaoping, W. (2018). Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. fishermen. Chemosphere, 202, 154–164. https://doi.org/10.1016/j.chemosphere.2018.03.082

    Article  CAS  Google Scholar 

  • NRMMCA. (2011). National Resource Management Ministerial Council. National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, Australia. https://www.nhmrc.gov.au/guidelines-publications/eh52. Accessed 25 May 2019.

  • Rabee, A., Al-Fatlawy, Y., Abd own, A., & Nameer, M. (2011). Using pollution load index (PLI) and geoaccumulation index (I-Geo) for the assessment of heavy metals pollution in Tigris River sediment in Baghdad Region. Journal of Al-Nahrain University, 14(4), 108–114. http://jnus.org/pdf/2011/12/118.pdf

  • Saha, P. K., & Hossain, M. D. (2011). Assessment of heavy metal contamination and sediment quality in the Buriganga River, Bangladesh. The International Conference on Environmental Science and Technology, 6, 384–388. https://doi.org/10.1016/j.aqpro.2013.07.003

    Article  Google Scholar 

  • Sarojam, P. (2010). Analysis of wastewater for metals using ICP-OES. Perkin Elmer Instruments, 11.

  • Sekabira, K., Origa, H. O., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of Heavy Metal Pollution in the Urban Stream Sediments and Its Tributaries, 7(3), 435–446.

    CAS  Google Scholar 

  • Shafie, N. A., Aris, A. Z., & Haris, H. (2015). Geoaccumulation and distribution of heavy metals in the urban river sediment. International Journal of Sediment Research, 29(3), 368–377. https://doi.org/10.1016/S1001-6279(14)60051-2

    Article  Google Scholar 

  • Simpson, S. L., & Batley, G. E. (2007). Predicting metal toxicity in sediments: A critique of current approaches. Integrated Environmental Assessment and Management, 3(1), 18–31. https://doi.org/10.1897/1551-3793(2007)3[18:PMTISA]2.0.CO;2

    Article  CAS  Google Scholar 

  • Simpson, S. L., & Spadaro, D. A. (2016). Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: Implications for deep sea exploration, mining and tailings disposal. Environmental Science and Technology, 50(7), 4061–4070. https://doi.org/10.1021/acs.est.6b00203

    Article  CAS  Google Scholar 

  • Taiwan EPA. (2010). Soil and Groundwater Pollution Remediation Act. Taiwan Environmental Protection Administration, Taipei, Taiwan. https://sgw.epa.gov.tw/. Accessed 25 May 2019.

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Molecular, clinical and environmental toxicology, 101, 1–30. https://doi.org/10.1007/978-3-7643-8340-4

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of some major elements of the Earth’s crust. Geological Society of America Bulletin, 72(February), 175–192.

    Article  CAS  Google Scholar 

  • USEPA. (2000). Method 6010 C − Inductively Coupled Plasma-Atomic Emission Spectrometry. United States Environmental Protection Agency, Washington, DC, USA. https://www.epa.gov/sites/production/files/2015-07/documents/epa-6010c.pdf

  • USEPA. (2013). Surface Water Sampling. United States Environmental Protection Agency, Washington, DC, USA. https://www.epa.gov/sites/production/files/2015-06/documents/Surfacewater-Sampling.pdf. Accessed 25 May 2019.

  • USEPA. (2014). Sediment Sampling. United States Environmental Protection Agency, Washington, DC, USA. https://www.epa.gov/sites/production/files/2015-06/documents/Sediment-Sampling.pdf. Accessed 25 May 2019.

  • Vu, C. T., Lin, C., Shern, C. C., Yeh, G., Le, V. G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82(January), 32–42. https://doi.org/10.1016/j.ecolind.2017.06.008

    Article  CAS  Google Scholar 

  • Yan, N., Liu, W., Xie, H., Gao, L., Han, Y., Wang, M., & Li, H. (2016). Distribution and assessment of heavy metals in the surface sediment of Yellow River, China. Journal of Environmental Sciences (china), 39, 45–51. https://doi.org/10.1016/j.jes.2015.10.017

    Article  CAS  Google Scholar 

  • Yi, Y., Tang, C., Yi, T., Yang, Z., & Zhang, S. (2017). Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River. China. Ecotoxicology and Environmental Safety, 145(June), 295–302. https://doi.org/10.1016/j.ecoenv.2017.07.022

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011

    Article  CAS  Google Scholar 

  • Yuan, F., Zhu, G., Meng, H., Guo, D., Sun, L., Liu, K., & Zheng, Y. (2018). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena, 175(July 2018), 101–109. https://doi.org/10.1016/j.catena.2018.12.014

  • Zhuang, P., Mcbride, M. B., Xia, H., Li, N., & Li, Z. (2008). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, the, 407(5), 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061

    Article  CAS  Google Scholar 

  • Živković, N., Takić, L., Djordjević, L., Djordjević, A., Mladenović-Ranisavljević, I., Golubović, T., & Božilov, A. (2019). Concentrations of heavy metal cations and a health risk assessment of sediments and river surface water: A case study from a Serbian mine. Polish Journal of Environmental Studies, 28(3), 2009–2020. https://doi.org/10.15244/pjoes/89986

    Article  Google Scholar 

  • Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., & Yang, Z. (2018). Assessment of heavy metal contamination, distribution, and source identification in the sediments from the Zijiang River, China. Science of the Total Environment, 645, 235–243. https://doi.org/10.1016/j.scitotenv.2018.07.026

Download references

Acknowledgements

The authors thank Jimma University for financial and material support and those who participated in the study.

Funding

The research work was financially supported by the Jimma University.

Author information

Authors and Affiliations

Authors

Contributions

Higemengist Astatkie, Argaw Ambelu, and Embialle Mengistie participated on the research design and data analysis. Higemengist Astatkie carried out the data preparation and statistical analysis, interpreted the data, and prepared the manuscript. Argaw Ambelu and Embialle Mengistie offered major revision.

Corresponding author

Correspondence to Higemengist Astatkie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astatkie, H., Beyene, E.M. & Ambelu, A. Contamination and ecological risk assessment of toxic metals in Awetu watershed stream waters and sediments, Ethiopia. Environ Monit Assess 194, 451 (2022). https://doi.org/10.1007/s10661-022-10096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10096-7

Keywords

Navigation