Skip to main content
Log in

Long-term orchard practice affects the ecological and human health risk of soil heavy metals in a calcareous environment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The contamination of agroecosystems with heavy metals, caused by the long-term agricultural practices (e.g., the application of extensive agrochemical), has become a high-priority issue for soil-food-human health. Our study aimed to estimate the effect of the agricultural activities on contamination severity and health risk potential of heavy metals in the soil-urban apple orchards versus control soils across various soil types and apple cultivars. This research assessed pollution index (PI), pollution load index (PLI), ecological risk (ER), bio-concentration factor (BCF), hazard quotient (HQ), and overall hazard index (HI). The results revealed a significant increase in the concentration of all metals of the orchard soils, ranging 30–51%, 19–24%, 70–137%, 25–33%, and 16–23% for Zn, Cu, Cd, Pb, and Ni, respectively, versus those in the control soils. Compared to the control soils, PI, PLI, and ER reflected a significant increase in the orchard soils ranging 13–67%, 18–45%, and 18–33%, respectively, which has downgraded their scoring class by one grade. Cd and Pb were not detected in the samples collected from the apple cultivars ‘Golden Delicious’ (GD) and ‘Red Delicious’ (RD), indicating no toxic levels of Cd and Pb. Compared to the GD, the concentration of Zn, Cu, and Ni was comparatively higher in RD, implying varying heavy metal accumulation potentials in two different apple cultivars. The mean HQ and HI were in the low category (0.1 ≤ HQ and HI < 1) in both GD and RD cultivars, meaning that GD and RD are safe for local residents to be consumed and do not pose a significant potential risk to the health of consumers. However, HQ and HI were significantly higher in the RD cultivar than in the GD cultivar in most apple samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406.

    Article  CAS  Google Scholar 

  • Ali, B., Gill, R. A., Yang, S., Gill, M. B., Ali, S., Rafiq, M. T., & Zhou, W. (2014). Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology and Environmental Safety, 110, 197–207.

    Article  CAS  Google Scholar 

  • Amer, M. M., Sabry, B. A., Marrez, D. A., Hathout, A. S., & Fouzy, A. S. (2019). Exposure assessment of heavy metal residues in some Egyptian fruits. Toxicology Reports, 6, 538–543.

    Article  CAS  Google Scholar 

  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727.

    Article  CAS  Google Scholar 

  • Baruah, S. G., Ahmed, I., Das, B., Ingtipi, B., Boruah, H., Gupta, S. K., Nema, A. K., & Chabukdhara, M. (2021). Heavy metal (loid) s contamination and health risk assessment of soil-rice system in rural and peri-urban areas of lower brahmaputra valley, northeast India. Chemosphere, 266, 129150.

    Article  CAS  Google Scholar 

  • Chang, C. Y., Yu, H. Y., Chen, J. J., Li, F. B., Zhang, H. H., & Liu, C. P. (2014). Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environmental Monitoring and Assessment, 186(3), 1547–1560.

    Article  CAS  Google Scholar 

  • Drouineau, G. (1942). Dosage rapide du calcaire du sol, nouvelles donnees sur la separation et la nature des fractions calcaires. Annual Agronomy, 12, 441–450.

    CAS  Google Scholar 

  • European Commission (EC). (2008). Amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. No 629/2008. http://data.europa.eu/eli/reg/2008/629/oj

  • Fang, B., & Zhu, X. (2014). High content of five heavy metals in four fruits: Evidence from a case study of Pujiang County, Zhejiang Province, China. Food Control, 39, 62–67.

    Article  Google Scholar 

  • FAO/WHO (Food and Agriculture Organization/World Health Organization). (2017). Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Codex Alimentarius Commission. http://www.fao.org/fao-who-codexalimentarius/sh

  • Gee, G. W., & Or, D. (2002). 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255–293.

  • Gill, R. A., Zang, L., Ali, B., Farooq, M. A., Cui, P., Yang, S., Ali, S., & Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere, 120, 154–164.

    Article  CAS  Google Scholar 

  • Gupta, N., Yadav, K. K., Kumar, V., Krishnan, S., Kumar, S., Nejad, Z. D., Khan, M. M., & Alam, J. (2021). Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environmental Toxicology and Pharmacology, 82, 103563.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hazelton, P. A., & Murphy, B. W. (2016). Interpretation of soil test results (what do all the numbers mean?). CSIRO publishing 150 Oxford Street (PO Box 1139) Collingwood VIC 3066, Australia.

  • Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag., 207, 159e168.

    Article  Google Scholar 

  • Jia, J., Bai, J., Xiao, R., Tian, S., Wang, D., Wang, W., Zhang, G., Cui, H., & Zhao, Q. (2022). Fractionation, source, and ecological risk assessment of heavy metals in cropland soils across a 100-year reclamation chronosequence in an estuary, South China. Science of the Total Environment, 807, 151725.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press.

    Book  Google Scholar 

  • Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., Li, D., Holm, P. E., Ou, Q., & Hu, W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment, 767, 144879.

    Article  CAS  Google Scholar 

  • Mansour, S. A., Belal, M. H., Abou-arab, A. A. K., & Gad, M. F. (2009). Chemosphere monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere, 75, 601–609. https://doi.org/10.1016/j.chemosphere.2009.01.058

    Article  CAS  Google Scholar 

  • Martorell, I., Perelló, G., Martí-cid, R., Llobet, J. M., Castell, V., & Domingo, J. L. (2011). Human exposure to arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: Temporal trend. Biological Trace Element Research, 142, 309–322. https://doi.org/10.1007/s12011-010-8787-x

    Article  CAS  Google Scholar 

  • Milićević, T., Urosevic, M., Relic, D., Jovanovic, G., Nikolic, D., Vergel, K., & Popovic, A. (2021). Environmental pollution influence to soil–plant–air system in organic vineyard: Bioavailability, environmental, and health risk assessment. Environmental Science and Pollution Research, 28, 3361–3374.

    Article  Google Scholar 

  • National Research Council (NRC). (2003). Bioavailability of contaminants in soils and sediments: Processes, tools, and applications. National Academies Press.

  • Nordberg, G. F., Bernard, A., Diamond, G. L., Duffus, J. H., Illing, P., Nordberg, M., Bergdahl, I. A., Jin, T., & Skerfving, S. (2018). Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure and Applied Chemistry, 90(4), 755–808.

    Article  CAS  Google Scholar 

  • Nouri, A., Yoder, D. C., Raji, M., Ceylan, S., Jagadamma, S., Lee, J., Walker, F. R., Yin, X., Fitzpatrick, J., Trexler, B., & Arelli, P. (2021). Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US. Communications Earth & Environment, 2(1), 1–12.

    Article  Google Scholar 

  • Oldeman, L. R. (1994). The global extent of soil degradation. In: D. J. Greenland, & I. Szabolcs (Eds.) Soil resilience and sustainable land use. CAB International, Wallingford.

  • Paz, S., Rubio, C., Frías, I., Gutiérrez, Á. J., González-Weller, D., Martín, V., Revert, C., & Hardisson, A. (2019). Toxic metals (Al, Cd, Pb and Hg) in the most consumed edible seaweeds in Europe. Chemosphere, 218, 879–884.

    Article  CAS  Google Scholar 

  • Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J. Y., & Xiang, P. (2020). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 129205.

  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385.

    Article  CAS  Google Scholar 

  • Raiesi, F., & Beheshti, A. (2022). Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques. Catena, 208, 105778.

    Article  CAS  Google Scholar 

  • Rezapour, S., Atashpaz, B., Moghaddam, S. S., Kalavrouziotis, I. K., & Damalas, C. A. (2019). Cadmium accumulation, translocation factor, and health risk potential in a wastewater-irrigated soil-wheat (Triticum aestivum L.) system. Chemosphere, 231, 579–587.

    Article  CAS  Google Scholar 

  • Rezapour, S., Kouhinezhad, P., & Samadi, A. (2020). Trace metals toxicity in relation to long-term intensive agricultural production in a calcareous environment with different soil types. Natural Hazards, 100(2), 551–570.

    Article  Google Scholar 

  • Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and plant analysis laboratory manual. ICARDA.

  • Shi, T., Ma, J., Zhang, Y., Liu, C., Hu, Y., Gong, Y., Wu, X., Ju, T., Hou, H., & Zhao, L. (2019). Status of lead accumulation in agricultural soils across China (1979–2016). Environment International, 129, 35–41.

    Article  CAS  Google Scholar 

  • Soil Survey Division Staff. (2017). Soil survey manual. Agriculture handbook No. 18.

  • Soil Survey Staff. (2014). Keys to soil taxonomy. United States Department of Agriculture, Natural Resources Conservation Service, Washington, D.C.

  • Soon, Y. R., & Abboud, S. (1993). Cadmium, chromium, and nickel. In M. R. Carter (Ed.), Soil sampling and methods of soil analysis (pp. 101–108). Lewis Publishers.

    Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). 2020. Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons.

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5), 517–523.

    Article  CAS  Google Scholar 

  • Sutherland, R. (2000). Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environmental Geology, 6, 611–627.

    Article  Google Scholar 

  • Taghizadeh, S. F., Davarynejad, G., Asili, J., Nemati, S. H., Rezaee, R., Goumenou, M., Tsatsakis, A. M., & Karimi, G. (2017). Health risk assessment of heavy metals via dietary intake of five pistachio (Pistacia vera L.) cultivars collected from different geographical sites of Iran. Food and Chemical Toxicology, 107, 99–107.

    Article  CAS  Google Scholar 

  • Tian, K., Li, M., Hu, W., Huang, B., & Zhao, Y. (2022). Environmental capacity of heavy metals in intensive agricultural soils: Insights from geochemical baselines and source apportionment. Science of The Total Environment, 153078.

  • US EPA. (2004). Risk assessment guidance for superfund vol I: Human health evaluation manual (part E, supplemental guidance for dermal risk assessment).

  • Wang, Q., Liu, J., & Cheng, S. (2015). Heavy metals in apple orchard soils and fruits and their health risks in Liaodong Peninsula, Northeast China. Environmental Monitoring and Assessment, 187(1), 1–8.

    Google Scholar 

  • Wilding, L. P., & Dress, L. R. (1983). Spatial variability and pedology. In: Wilding et al. (Eds.), Pedogenesis and soil Taxonomy. I. concept and Intractions. Elsevier Sci. Pub. pp. 83−116.

  • Wu, Q., Jiang, X., Lu, Q., Li, J., & Chen, J. (2021). Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations. Journal of Forestry Research, 32(1), 355–362.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    Article  CAS  Google Scholar 

  • Yang, L., Ren, Q., Zheng, K., Jiao, Z., Ruan, X., & Wang, Y. (2022). Migration of heavy metals in the soil-grape system and potential health risk assessment. Science of the Total Environment, 806, 150646.

    Article  CAS  Google Scholar 

  • Zhao, Q., Liu, S., Deng, L., Dong, S., & Wang, C. (2014). Soil degradation associated with water-level fluctuations in the Manwan Reservoir, Lancang River Basin. Catena, 113, 226–235.

    Article  CAS  Google Scholar 

  • Zhuang, Z., Mu, H. Y., Fu, P. N., Wan, Y. N., Yu, Y., Wang, Q., & Li, H. F. (2020). Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county. Journal of Environmental Management, 269, 110797.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the personnel of Islamic Azad University, Tabriz Branch for their cooperation and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salar Rezapour or Elnaz Sabbaghtazeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afra, Z., Rezapour, S., Sabbaghtazeh, E. et al. Long-term orchard practice affects the ecological and human health risk of soil heavy metals in a calcareous environment. Environ Monit Assess 194, 433 (2022). https://doi.org/10.1007/s10661-022-10084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10084-x

Keywords

Navigation