Skip to main content
Log in

Are zooplankton useful indicators of ecological quality in Afrotropical ephemeral stream impacted by human activities?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ephemeral river systems in Nigeria are under severe threat by increasing anthropogenic pollution. However, little is known about the ecological health of ephemeral rivers in Afrotropical regions, especially Nigeria. It is also unclear how zooplankton communities respond to anthropogenic stressors in ephemeral rivers in the African continent. In this study, we explored the responses of zooplankton to environmental indicators of human activities to assess the health of River Kafin Hausa, an ephemeral river system in north-western Nigeria. Our specific objectives were to explore the response patterns of zooplankton communities to anthropogenic pollution in the north-western ephemeral rivers and examine their potential use as reliable indicators for long-term monitoring of ephemeral systems impacted by different human activities. We collected zooplankton and physicochemical variables from three sites in five months, from January to February and April to June 2018. One-way ANOVA showed air temperature, water temperature, pH, salinity, BOD5, phosphate and nitrate varied significantly (p < 0.05) between the sites across the 5 months. We recorded four zooplankton groups, namely Cladocera, Copepoda, Protozoa and Rotifera. The cluster analysis revealed that the organisms were grouped mainly by sites rather than by seasons. The multivariate canonical correspondence analysis (CCA) revealed a weak association between the zooplankton community assemblages and physicochemical variables. However, there were differential responses of zooplankton to physicochemical variables in the river system, with species such as Eurytemora affinis, Acartia tonse and Sinodiaptomus sarsi being sensitive, indicating positive associations with DO concentration. Conversely, species such as Macrothrix rosea and Bosmina longirostris were tolerant, demonstrating their usefulness as bioindicators of bad water quality as they associated positively with TDS, water depth, nitrates and salinity. Overall, the study revealed further insights into the responses of zooplankton communities to pollution, and their potential use as indicators organisms in ephemeral rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data used in this paper would be made available by the corresponding author when requested for further research.

References

  • Abdul, W. O., Adekoya, E. O., Ademolu, K. O., Omoniyi, I. T., Odulate, D. O., Akindokun, T. E., & Olajide, A. E. (2016). The effects of environmental parameters on zooplankton assemblages in tropical coastal estuary, south-west Nigeria. Egyptian Journal of Aquatic Research, 42, 281–287.

    Article  Google Scholar 

  • Abdulwahab, S., & Rabee, A. M. (2015). Ecological factors affecting distribution of the zooplankton community in the Tigris River at Baghdad region, Iraq. Egyptian Journal of Aquatic Research, 41, 187–196.

    Article  Google Scholar 

  • Adeyemi, S. O. (2012). Preliminary census of zooplanktons and phytoplankton community of Ajeko Stream, Iyale, North Central Nigeria. Animal Research International, 9(3), 1638–1644.

    Google Scholar 

  • Akindele, O. E., & Olutona, G. O. (2014). Water physicochemistry and zooplankton fauna of Aiba Reservoir headwater streams, Iwo, Nigeria. Journal of Ecosystems, 4, 11. https://doi.org/10.1155/2014/105405

    Article  Google Scholar 

  • Akin-Oriola, G. A. (2003). Zooplankton associations and environmental factors in Ogunpa and Ona Rivers, Nigeria. Revista Biologia Tropical, 51(2), 391–398.

    Google Scholar 

  • Ahmed, S. D., Agodzo, S. K., Adjei, K. A., Deinmodei, M., & Ameso, V. C. (2018). Preliminary investigation of flooding problems and the occurrence of kidney disease around Hadejia-Nguru wetlands, Nigeria and the need for an ecohydrology solution. Ecohydrology and Hydrobiology, 18(2), 212–224. https://doi.org/10.1016/j.ecohyd.2017.11.005

    Article  Google Scholar 

  • APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater, WEF and AWWA, 20th Edition, USA. 1213Pp.

  • Arazu, V. N., & Ogbeibu, A. E. (2017). The composition, abundance and distribution of zooplankton of River Niger at Onitsha Stretch, Nigeria. Animal Research International, 14(1), 2629–2643.

    Google Scholar 

  • Arimoro, F. O., & Oganah, A. O. (2009). Zooplankton community responses in a perturbed tropical stream in the Niger Delta, Nigeria. The Open Environmental & Biological Monitoring Journal, 3(1), 1–11. https://doi.org/10.2174/1875040001003010001

    Article  CAS  Google Scholar 

  • Arimoro, F. O., Abubakar, M. D., Obi-iyeke, G. E., & Keke, U. N. (2021). Environmental and Sustainability Indicators Achieving sustainable river water quality for rural dwellers by prioritizing the conservation of macroinvertebrates biodiversity in two Afrotropical streams. Environmental and Sustainability Indicators, 10, 100103. https://doi.org/10.1016/j.indic.2021.100103

    Article  Google Scholar 

  • Arimoro, F. O., Ikomi, R. B., Nwadukwe, F. O., Eruotor, O. D., & Edegbene, A. O. (2014). Fluctuating salinity levels and an increasing pollution gradient on fish community structure and trophic levels in a small creek in the Niger Delta, Nigeria. International Aquatic Research, 6(4), 187–202.

    Article  Google Scholar 

  • Ayeni, A. O., Ogunsesan, A. A., & Adekola, O. A. (2019). Provisioning ecosystem services provided by the Hadejia Nguru Wetlands, Nigeria – Current status and future priorities. Scientific African. https://doi.org/10.1016/j.sciaf.2019.e00124

    Article  Google Scholar 

  • Bonecker, C. C., Simões, N. R., Minte-Vera, C. V., Lansac-Tôha, F. A., Velho, L. F. M., & Agostinho, Â. A. (2013). Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica, 43(2), 114–121. https://doi.org/10.1016/j.limno.2012.07.007

    Article  Google Scholar 

  • Chiba, S., Batten, S., Martin, C. S., Ivory, S., Miloslavich, P., & Weatherdon, L. V. (2018). Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges. Journal of Plankton Research, 40(5), 509–518. https://doi.org/10.1093/plankt/fby030

    Article  Google Scholar 

  • Edegbene, A. O. (2020). Potential menace posed by invasive grass and water quality deterioration on macroinvertebrates structural distribution in a dam in North- Western Nigeria. Water Science, 34(1), 75–84. https://doi.org/10.1080/11104929.2020.1751918

    Article  Google Scholar 

  • Edegbene, A. O., & Arimoro, F. O. (2012). Ecological status of Owan River, Southern Nigeria using aquatic insects as bioindicators. Journal of Aquatic Science, 27(2), 99–111.

    Google Scholar 

  • Edegbene, A. O., Arimoro, F. O., & Nwaka,K.H., Omovoh, G.O., Ogidiaka, E., & Abolagba, O.J. (2012). The physical and chemical characteristics of Atakpo River, Niger Delta, Nigeria. Journal of Aquatic Science, 27(2), 159–172.

    Google Scholar 

  • El-Shabrawy, G. M. (2009). Lake Nasser-Nubia. In: Dumont, H.J. (Ed.) The Nile: Origin, environments, limnology and human use, Springer Science+Business Media, pp. 125–156.

  • Gao, X., Song, J., & Li, X. (2011). Zooplankton spatial and diurnal variations in the Changjiang River estuary before operation of the Three Gorges Dam. Chinese Journal of Oceanology and Limnology, 29(3), 591–602. https://doi.org/10.1007/s00343-011-0098-3

    Article  Google Scholar 

  • Garba, F., Ogidiaka, E., Akamagwuna, F. C., Nwaka, K. H., & Edegebene, A. O. (2022). Deteriorating water quality state on the structural assemblage of aquatic insects in a North-Western Nigerian River. Water Science, 36(1), 22–31. https://doi.org/10.1080/23570008.2022.2034396

    Article  Google Scholar 

  • Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1994). Stream hydrology, an introduction for Ecologists. New York: John Wiley & Sons Ltd, 526Pp.

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 9Pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (Accessed 1 July 2015).

  • Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R., & Huntley, M. C. (ed.). (2000). Zooplankton methodology manual. Academic press: A Harcourt Science and Technology company, UK. http://www.academicpress.com , 707Pp.

  • Imoobe, T. O. T. (2011). Diversity and seasonal variation of zooplankton in Okhuo River, a tropical forest river in Edo State, Nigeria. Centrepoint Journal, 17(1), 37–51.

    Google Scholar 

  • Khalifa, N., El-Damhogy, K. A., Fishar, M. R., Nasef, A. M., & Hegab, M. H. (2015). Vertical distribution of zooplankton in Lake Nasser. Egyptian Journal of Aquatic Research, 41, 177–185.

    Article  Google Scholar 

  • Kuczyńska-Kippen, N., Špoljar, M., Zhang, C., & Pronin, M. (2020). Zooplankton functional traits as a tool to assess latitudinal variation in the northern-southern temperate European regions during spring and autumn seasons. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.106629

    Article  Google Scholar 

  • Lemley, D. A., Adams, J. B., & Bate, G. C. (2016). A review of microalgae as indicators in South African estuaries. South African Journal of Botany, 107, 12–20. https://doi.org/10.1016/j.sajb.2016.04.008

    Article  Google Scholar 

  • Li, Y., & Chen, F. (2020). Are zooplankton useful indicators of water quality in subtropical lakes with high human impacts? Ecological Indicators, 113, 106167. https://doi.org/10.1016/j.ecolind.2020.106167

    Article  CAS  Google Scholar 

  • Lomartire, S., Marques, J. C., & Gonçalves, A. M. M. (2021). The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecological Indicators, 129, 107867. https://doi.org/10.1016/j.ecolind.2021.107867

    Article  Google Scholar 

  • Makwinja, R., Mengistou, S., Kaunda, E., & Alamirew, T. (2021). Spatial distribution of zooplankton in response to ecological dynamics in tropical shallow lake : Insight from Lake Malombe, Malawi. Journal of Freshwater Ecology, 36(1), 127–147. https://doi.org/10.1080/02705060.2021.1943019

    Article  CAS  Google Scholar 

  • Neves, I. F., Rocha, D., Roche, K. F., & Pinto, A. A. (2003). Zooplankton community structure of two marginal lake of river (Cuiaba) (Mato, Grosso, Brazil) with analysis of rotifer and Cladocera diversity. Brazillian Journal of Biology, 63(2), 329–343.

    Article  CAS  Google Scholar 

  • Nhiwatiwa, T., Dalu, T., & Brendonck, L. (2017). Impact of irrigation based sugarcane cultivation on the Chiredzi and Runde Rivers quality, Zimbabwe. Science of the Total Environment, 587–588, 316–325. https://doi.org/10.1016/j.scitotenv.2017.02.155

    Article  CAS  Google Scholar 

  • Ogbeibu, A. E., & Obanor, D. O. (2002). Studies on the crustacean zooplankton of an impounded river, southern Nigeria. Bioscience Research Communication, 14(6), 579–587.

    Google Scholar 

  • Sarma, S. S. S., Gulati, R. D., & Nandini, S. (2005). Factors affecting egg-ratio in planktonic rotifers. Hydrobiologia, 546(1), 361–373. https://doi.org/10.1007/s10750-005-4247-6

    Article  Google Scholar 

  • Shimba, M. J., & Jonah, F. E. (2016). Macroinvertebrates as bioindicators of water quality in the Mkondoa River, Tanzania, in an agricultural area. African Journal of Aquatic Science, 41, 1–9. https://doi.org/10.2989/16085914.2016.1230536

    Article  Google Scholar 

  • Smith, T., Daniel, A. L., Janine, B. A., & Nadine, A. (2021). Preliminary insights on the fine-scale responses in larval Gilchristella aesturia (Family Clupeidae) and dominant zooplankton to estuarine harmful algal blooms. Estuarine, Coastal and Shelf Science, 249, 107072. https://doi.org/10.1016/j.ecss.2020.107072

    Article  Google Scholar 

  • Stubbington, R., Paillex, A., England, J., Barthès, A., Bouchez, A., Rimet, F., Sánchez-Montoya, M. M., Westwood, C. G., & Datry, T. (2019). A comparison of biotic groups as dry-phase indicators of ecological quality in intermittent rivers and ephemeral streams. Ecological Indicators, 97, 165–174. https://doi.org/10.1016/j.ecolind.2018.09.061

    Article  Google Scholar 

  • Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Abdulkareem, J. H. (2018). Runoff irregularities, trends, and variations in tropical semi-arid river catchment. Journal of Hydrology: Regional Studies, 19, 335–348. https://doi.org/10.1016/j.ejrh.2018.10.008

    Article  Google Scholar 

  • Uriarte, I., & Villate, F. (2004). Effects of pollution on zooplankton abundance and distribution in two estuaries of the Basque coast (Bay of Biscay). Marine Pollution Bulletin, 49(3), 220–228. https://doi.org/10.1016/j.marpolbul.2004.02.010

    Article  CAS  Google Scholar 

  • Watson, M., & Dallas, H. F. (2013). Bioassessment in ephemeral rivers: Constraints and challenges in applying macroinvertebrate sampling protocols. African Journal of Aquatic Science, 38(1), 35–51. https://doi.org/10.2989/16085914.2012.742419

    Article  Google Scholar 

  • Witty, L. M. (2004). Practical guide to identifying crustacean zooplankton (2nd edition). Cooperative freshwater ecology unit, Department of Biology, Laurentian University, Ontario, Canada. http://coopunit.laurentian.ca

  • Yagit, S. (2006). Analysis of zooplankton community by the Shannon-weaver index in Kesikkopru Dam Lake Turkey. Tarim Bilimeleri Dergisi, 12(2), 41–46.

    Google Scholar 

  • Yamaguchi, E., & Bell, C. (2007). Zooplankton identification guide. The University of Georgia Marine Education center and aquarium. http://www.marex.uga.edu/aquarium

  • Yuezhao, L., Chen, H., Song, L., Wu, J., Sun, W., & Teng, Y. (2021). Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. Journal of Hazardous Materials, 409, 124472. https://doi.org/10.1016/j.jhazmat.2020.124472

    Article  CAS  Google Scholar 

  • Zaghloul, F. A. (1985). Seasonal variations of plankton in Lake Nasser, Ph.D. Thesis, Faculty of Science, Suez Canal University, Egypt.

Download references

Acknowledgements

We appreciate the field assistance and proofreading of the initial manuscript by Mrs. Edegbene Ovie Tega Treasure.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: Augustine Ovie Edegbene; methodology: Augustine Ovie Edegbene and Frank Chukwuzuoke Akamagwuna; formal analysis and investigation: Augustine Ovie Edegbene and Yasir Abdullahi; data analyses: Augustine Ovie Edegbene; writing — original draft preparation: Augustine Ovie Edegbene, Yasir Abdullahi and Frank Chukwuzuoke Akamagwuna; writing — review and editing: Augustine Ovie Edegbene, Yasir Abdullahi, Frank Chukwuzuoke Akamagwuna, Efe Ogidiaka, Ekihkalo Catherine Osimen and Blessing Odafe Omovoh; creating study area map: Frank Chukwuzuoke Akamagwuna; project supervision: Augustine Ovie Edegbene; manuscript finalization: Augustine Ovie Edegbene and Frank Chukwuzuoke Akamagwuna.

Corresponding author

Correspondence to Augustine Ovie Edegbene.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edegbene, A.O., Abdullahi, Y., Akamagwuna, F.C. et al. Are zooplankton useful indicators of ecological quality in Afrotropical ephemeral stream impacted by human activities?. Environ Monit Assess 194, 399 (2022). https://doi.org/10.1007/s10661-022-10061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10061-4

Keywords

Navigation