Skip to main content

Advertisement

Log in

Patterns of floristic and functional diversity in two treeline ecotone sites of Kashmir Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Globally, the treelines at higher elevations in mountains are reported to be advancing up-slope in response to recent climate warming. However, little is known about the treeline advancement in the Himalaya due to paucity of baseline vegetation data with which to compare, thus making their assessment and monitoring challenging. To fill this knowledge gap, the present study documented floristic and functional diversity of two treeline ecotone sites in Kashmir Himalaya. At each site, we conducted field sampling by laying five 20-m2 plots, with one at the highest limit (T0 plot), two plots below and two above the treeline and two nested subplots of 5-m2 for shrubs and five 1-m2 for herbs in each plot. We recorded 97 plant species belonging to 33 families from the two sites. We observed a considerable difference in species composition and distribution along the treeline ecotone. Majority of the species reported were perennial herbs. We observed a significant association of growth forms with the particular plots along the treeline ecotone. At both the sites, we recorded highest species richness at the T0 plot which was correlated well with the functional traits, thus indicating convergence of floristic and functional diversity at this transition zone. Interestingly, the T0 plot at both the sites showed maximum overlap of species with the plots above and below the treeline. In an era of climate warming, our study provides crucial baseline data that will facilitate assessment and monitoring of the Himalayan treelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data supporting the results and R codes are available from the corresponding author.

References

  • Acharya, K. P., Vetaas, O. R., & Birks, H. J. B. (2011). Orchid species richness along Himalayan elevational gradients. Journal of Biogeography, 38(9), 1821–1833. https://doi.org/10.1111/j.1365-2699.2011.02511.x

    Article  Google Scholar 

  • Allen, T. R., & Walsh, S. J. (1996). Spatial and compositional pattern of alpine treeline, Glacier National Park, Montana. Photogrammetric Engineering and Remote Sensing62(11), 1261–1268.

  • Bader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., & Resler, L. M. (2021). A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography, 44(2), 265–292. https://doi.org/10.1111/ecog.05285

    Article  Google Scholar 

  • Batllori, E., Blanco-Moreno, J. M., Ninot, J. M., Gutiérrez, E., & Carrillo, E. (2009). Vegetation patterns at the alpine treeline ecotone: The influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science, 20(5), 814–825. https://doi.org/10.1111/j.1654-1103.2009.01085.x

    Article  Google Scholar 

  • Behera, M. D., & Kushwaha, S. P. S. (2006). An analysis of altitudinal behavior of tree species in Subansiri district. Eastern Himalaya. Biodiversity and Conservation, 16(3), 1851–1865. https://doi.org/10.1007/s10531-006-9083-0

    Article  Google Scholar 

  • Bridson, D. M., & Forman, L. (1998). Herbarium handbook. Royal Botanic Gardens, Kew.

  • Bürzle, B., Schickhoff, U., Schickhoff, U., Schwab, N., Oldeland, J., Müller, M., Böhner, J., Chaudhary, R. P., Scholten, T., & Dickoré, W. B. (2017). Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia, 47, 197–220. https://doi.org/10.1127/phyto/2017/0130

    Article  Google Scholar 

  • Camarero, J. J., Gazol, A., Sánchez-Salguero, R., Fajardo, A., McIntire, E. J., & Gutiérrez, E., & Wilmking, M. (2021). Global fading of the temperature–growth coupling at alpine and polar treelines. Global Change Biology, 27(9), 1879–1889. https://doi.org/10.1111/gcb.15530

    Article  Google Scholar 

  • Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  • Dutta, P. K., Dutta, B. K., Sundriyal, R. C., & Das, A. K. (2013). Diversity, representativeness and biotic pressure on plant species along alpine timberline of Western Arunachal Pradesh in the Eastern Himalaya, India. Current Science, 701–708.

  • Elsen, P. R., Monahan, W. B., & Merenlender, A. M. (2020). Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-15881-x

    Article  CAS  Google Scholar 

  • Feuillet, T., Birre, D., Milian, J., Godard, V., Clauzel, C., & Serrano-Notivoli, R. (2020). Spatial dynamics of alpine tree lines under global warming: What explains the mismatch between tree densification and elevational upward shifts at the tree line ecotone? Journal of Biogeography, 47(5), 1056–1068. https://doi.org/10.1111/jbi.13779

    Article  Google Scholar 

  • Gatti, R. C., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., & Liang, J. (2019). Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-44188-1

    Article  CAS  Google Scholar 

  • Grytnes, J. A., & Vetaas, O. R. (2002). Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist, 159(3), 294–304. https://doi.org/10.1086/338542

    Article  Google Scholar 

  • Hagedorn, F., Shiyatov, S. G., Mazepa, V. S., Devi, N. M., Grigor’ev, A. A., Bartysh, A. A., & Moiseev, P. A. (2014). Treeline advances along the Urals mountain range–driven by improved winter conditions? Global Change Biology, 20(11), 3530–3543. https://doi.org/10.1111/gcb.12613

    Article  Google Scholar 

  • Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R., Singh, C. P., Dolezal, J., & Haq, S. M. (2020a). Early evidence of shifts in Alpine summit vegetation: A case study from Kashmir Himalaya. Frontiers in Plant Science, 11, 421. https://doi.org/10.3389/fpls.2020.00421

    Article  Google Scholar 

  • Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R., & Singh, C. P. (2020b). Assessment of alpine summit flora in Kashmir Himalaya and its implications for long-term monitoring of climate change impacts. Journal of Mountain Science, 17(8), 1974–1988. https://doi.org/10.1007/s11629-019-5924-7

    Article  Google Scholar 

  • Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R., & Singh, C. P. (2021). Elevation and aspect determine the differences in soil properties and plant species diversity on Himalayan mountain summits. Ecological Research, 36(2), 340–352. https://doi.org/10.1111/1440-1703.12202

    Article  CAS  Google Scholar 

  • Hartley, I. P., Garnett, M. H., Sommerkorn, M., Hopkins, D. W., Fletcher, B. J., Sloan, V. L., & Wookey, P. A. (2012). A potential loss of carbon associated with greater plant growth in the European Arctic. Nature Climate Change, 2(12), 875–879. https://doi.org/10.1038/nclimate1575

    Article  CAS  Google Scholar 

  • Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4), 445–459. https://doi.org/10.1007/s004420050540

    Article  Google Scholar 

  • Körner, C. (2012). Alpine treelines: Functional ecology of the global high elevation tree limits. Springer.

    Book  Google Scholar 

  • Körner, C. (2016). Plant adaptation to cold climates. F1000Research5https://doi.org/10.12688/f1000research.9107.1

  • Körner, C. (2021). Alpine treelines. In Alpine Plant Life, 141–173. Springer, Cham.

  • Körner, C., & Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5), 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology, 2nd English edn Amsterdam. Elsevier.

    Google Scholar 

  • Lu, X., Liang, E., Wang, Y., Babst, F., & Camarero, J. J. (2021). Mountain treelines climb slowly despite rapid climate warming. Global Ecology and Biogeography, 30(1), 305–315. https://doi.org/10.1111/geb.13214

    Article  Google Scholar 

  • Maher, C. T., Millar, C. I., Affleck, D. L., Keane, R. E., Sala, A., Tobalske, C., & Nelson, C. R. (2021). Alpine treeline ecotones are potential refugia for a montane pine species threatened by bark beetle outbreaks. Ecological Applications, 31(3), e2274. https://doi.org/10.1002/eap.2274

    Article  Google Scholar 

  • Mainali, K., Shrestha, B. B., Sharma, R. K., Adhikari, A., Gurarie, E., Singer, M., & Parmesan, C. (2020). Contrasting responses to climate change at Himalayan treelines revealed by population demographics of two dominant species. Ecology and Evolution, 10(3), 1209–1222. https://doi.org/10.1002/ece3.5968

    Article  Google Scholar 

  • McCain, C. M., & Grytnes, J. A. (2010). Elevational gradients in species richness. In ‘Encyclopedia of Life Sciences (ELS)’. John Wiley & Sons, Ltd.

  • Meyer, D., Zeileis, A., Hornik, K., Gerber, F., Friendly, M., & Meyer, M. D. (2021). Package ‘vcd’. R package version, 1.4–9.

  • Miehe, G., Miehe, S., Vogel, J., & La, D. (2007). Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27(2), 169–173. https://doi.org/10.1659/mrd.0792

    Article  Google Scholar 

  • Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A., & Mir, S. A. (2018). Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Tropical Ecology, 59(2), 211–224.

    Google Scholar 

  • Oksanen, J., Blanchet F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., & Wagner, H. (2020). Vegan: community ecology package.

  • Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography, 47(2), 315–325. https://doi.org/10.1111/jbi.13731

    Article  Google Scholar 

  • R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 8 June 2021.

  • Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8(2), 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x

    Article  Google Scholar 

  • Rawal, R. S., Rawal, R., Rawat, B., Negi, V. S., & Pathak, R. (2018). Plant species diversity and rarity patterns along altitude range covering treeline ecotone in Uttarakhand: Conservation implications. Tropical Ecology, 59(2), 225–239.

    Google Scholar 

  • Rawat, B., Gaira, K. S., Gairola, S., Tewari, L. M., & Rawal, R. S. (2021). Spatial prediction of plant species richness and density in high-altitude forests of Indian west Himalaya. Trees, Forests and People, 6, 100132. https://doi.org/10.1016/j.tfp.2021.100132

    Article  Google Scholar 

  • Schickhoff, U. (2005). The upper timberline in the Himalayas, Hindu Kush and Karakorum: A review of geographical and ecological aspects. Mountain Ecosystems. https://doi.org/10.1007/3-540-27365-4_12

    Article  Google Scholar 

  • Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6(1), 245–265. https://doi.org/10.5194/esd-6-245-2015

    Article  Google Scholar 

  • Schwab, N., Bürzle, B., Böhner, J., Chaudhary, R. P., Scholten, T., & Schickhoff, U. (2022). Environmental Drivers of Species Composition and Tree Species Density of a Near-Natural Central Himalayan Treeline Ecotone: Consequences for the Response to Climate Change. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_13

  • Simpson, G. G. (1960). Notes on the measurement of faunal resemblance. American Journal of Science, 258(2), 300–311.

    Google Scholar 

  • Singh, S. P., Gumber, S., Singh, R. D., & Singh, G. (2020). How many tree species are in the Himalayan treelines and how are they distributed? Tropical Ecology, 61(3), 317–327. https://doi.org/10.1007/s42965-020-00093-7

    Article  Google Scholar 

  • Stewart, R. R. (1972). An annotated catalogue of the vascular plants of West Pakistan and Kashmir. Fakhri Print. Press, Karachi.

    Google Scholar 

  • Stöcklin, J. (2011). Why Alpine Botany? Alpine Botany, 121, 1–4. https://doi.org/10.1007/s00035-011-0090-8

    Article  Google Scholar 

  • Suissa, J. S., Sundue, M. A., & Testo, W. L. (2021). Mountains, climate and niche heterogeneity explain global patterns of fern diversity. Journal of Biogeography, 48, 1296–1308. https://doi.org/10.1111/jbi.14076

    Article  Google Scholar 

  • Testolin, R., Attorre, F., Borchardt, P., Brand, R. F., Bruelheide, H., Chytrý, M., & Jiménez-Alfaro, B. (2021). Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 30(6), 1218–1231. https://doi.org/10.1111/geb.13297

    Article  Google Scholar 

  • Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people (p. 627). Springer Nature.

  • Whittaker, R. H. (1956). Vegetation of the great smoky mountains. Ecological Monographs, 26(1), 2–80. https://doi.org/10.2307/1943577

    Article  Google Scholar 

  • Winkler, M., Lamprecht, A., Steinbauer, K., Hülber, K., Theurillat, J. P., Breiner, F., & Pauli, H. (2016). The rich sides of mountain summits–a pan-European view on aspect preferences of alpine plants. Journal of Biogeography, 43(11), 2261–2273. https://doi.org/10.1111/jbi.12835

    Article  Google Scholar 

  • Zhang, J. T., Xu, B., & Li, M. (2013). Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing. China. Mountain Research and Development, 33(2), 170–178. https://doi.org/10.1659/MRD-JOURNAL-D-11-00042.1

    Article  Google Scholar 

  • Zindros, A., Radoglou, K., Milios, E., & Kitikidou, K. (2020). Tree Line Shift in the Olympus Mountain (Greece) and Climate Change. Forests, 11(9), 985. https://doi.org/10.3390/f11090985

    Article  Google Scholar 

Download references

Acknowledgements

We thank the research scholars of BIOTA Lab and staff at the Centre for Biodiversity and Taxonomy, University of Kashmir for their support in the field and Laboratory work. We would also like to thank the staff at KASH herbarium for permitting us to access preserved plant specimens. We thank the esteemed reviewer and editor for valuable comments on earlier version of the manuscript, which significantly improved its quality.

Funding

Funding for this study was provided to A.A.K. by Space Applications Centre (SAC) ISRO, Ahmedabad, India, under SHRESTI project (Grant number: SAC/EPSA/ALPINE/SHRESTI/10/2019) and by the Ministry of Environment, Forest and Climate Change (MoEFCC), New Delhi, under AICOPTAX project (Grant number: F No. 22018/12/2015/RE(Tax)).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and M.H. contributed equally to this manuscript and therefore share the first authorship. A.A.K. and C.P.S conceived the research idea and design. Field data collection and formal analyses were performed by A.A.K., A.G., M.H., F.A.D., S.A.W., and A.H.M. The original draft was equally written by A.G. and M.H. with detailed review and inputs from A.A.K. The manuscript was revised by M.H. and A.A.K. All the authors reviewed and approved the final draft of the manuscript for submission.

Corresponding author

Correspondence to Anzar Ahmad Khuroo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aadil Gulzar and Maroof Hamid equally shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulzar, A., Hamid, M., Dar, F.A. et al. Patterns of floristic and functional diversity in two treeline ecotone sites of Kashmir Himalaya. Environ Monit Assess 194, 420 (2022). https://doi.org/10.1007/s10661-022-10044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10044-5

Keywords

Navigation