Skip to main content

Advertisement

Log in

Environmental monitoring of trace elements and evaluation of environmental impacts to organisms near a former uranium mining site in Nigyo-toge, Japan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was conducted to find out characteristics of trace element levels and those impacts to organisms at a former uranium (U) mining site. Concentrations of trace elements (Li, Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Bi, and U) were determined in sediments, water, and three organism types (insects, frogs, and newts) from three zones in the former U mining site, Ningyo-toge in Japan. Concentrations of As and U in the sediments and water samples were the highest at the mill tailings pond (MP) site, where post-U extraction remnants have been accumulated. Additionally, among the organisms analyzed the highest concentrations of these elements/isotopes were found in newts from MP. Considering data analyses of the whole-body element concentrations, bioaccumulation factors, and δ15N values for the organisms, it was concluded that newts might be the most vulnerable species in this location. Further monitoring and more accurate evaluation of the ecological impacts are preferred for this former U mining site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available. The authors in this study supply the written permission from the copyright holder to publish in Environmental Monitoring and Assessment.

References

  • Amamoto, I., & Wakabayashi, S. (1993). Uranium refining and conversion at Ningyo-toge works. Shigen-to-Sozai, 109, 1170–1174. (in Japanese).

    Article  Google Scholar 

  • American Veterinary Medical Association. (2007). AVMA Guidlines on Euthanasia. 1–36.

  • Burger, J., Gaines, K. F., Boring, S., Stephens, W. L., Snodgrass, J., Dixon, C., et al. (2002). Metal levels in fish from the Savannah River: Potential hazards to fish and other receptors. Environmental Research Section A, 89, 85–97.

    Article  CAS  Google Scholar 

  • Burgess, R., Davis, R., & Edwards, D. (2018). Lead bioaccumulation in Texas harvester ants (Pogonomyrmex barbatus) and toxicological implications for Texas horned lizard (Phrynosoma cornutum) populations of Bexar Country Texas. Environmental Science and Pollution Research, 25, 8012–8026.

    Article  CAS  Google Scholar 

  • Campbell, L. M., Norstrom, R. J., Hobson, K. A., Muir, D. C. G., Backus, S., & Fisk, A. T. (2005). Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Science of the Total Environment, 351–352, 247–263.

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment, (CCME). (1999). Canadian environmental quality guidelines, Prepared by the Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Oattawa, Canada.

  • Carvalho, F. P., Oliveira, J. M., Lopes, I., & Batista, A. (2007). Radionuclides from past uranium mining in rivers of Portugal. L. Environ. Radioactivity, 98, 298–314.

    Article  CAS  Google Scholar 

  • Cazala, C., Andrés, C., Decossas, J., Cathelineau, M., & Peiffert, C. (2008). Impact of uranium mines water treatment on the uranium and radium behaviour.: in Uranium, Mining and Hydrogeology. Sringer-Verlag Berlin, Heidelberg. pp829–838. https://doi.org/10.1007/978-3-540-87746-2_109

  • Chen, C. Y., & Folt, C. L. (2000). Bioaccumulation and diminution of arsenic and lead in a freshwater food web. Environmental Science and Technology, 34, 3878–3884.

    Article  CAS  Google Scholar 

  • Chen, T. H., Gross, J. A., & Karasov, W. H. (2009). Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): Bioaccumulation and reduced swimming performance. Ecotoxicology, 18, 587–593.

    Article  Google Scholar 

  • Da Silve Veronez, A. C., Salla, R. V., Baroni, V. D., Barcarolli, I. F., Bianchini, A., dos Reis Martinez, C. B., & Chippari-Gomes, A. R. (2016). Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus. Aquatic Toxicology, 174, 101–108.

    Article  Google Scholar 

  • Driessnack, M. K., Dubé, M. G., Rozon-Ramilo, L. D., Jones, P. D., Wiramanaden, C. I. E., & Pickering, I. J. (2011). The use of field-based mesocosm systems to assess the effects of uranium milling effluent on fathead minnow (Pimephales promelas) reproduction. Ecotoxicology, 20, 1209–1224.

    Article  CAS  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology, 12, 335–353.

  • Edwards, P. G., Gaines, K. F., Bryan, A. L., Novak, J. M., & Blas, S. A. (2014). Trophic dynamics of U, Ni, Hg and other contaminants of potential concern on the Department of Energy’s Savannah River Site. Environmental Monitoring and Assessment186(1), 481-500.

  • Egea-Serrano, A., Relyea, R. A., Tejedo, M., & Torralva, M. (2012). Understanding of the impact of chemicals on amphibians: A meta-analytic review. Ecology and Evolution, 2, 1382–1397.

    Article  Google Scholar 

  • Gates, T. E. & Swenson, T. W. (1997). Sediment quality in the Wollaston lake area of northern Saskatchewan, 1994/1995. Draft Report, June 1997. Saskatchewan Environment and Resource management, Regina, SK, Canada.

  • Griboff, J., Horacek, M., Wunderlin, D. A., & Monferran, M. V. (2018). Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by anthropogenic pollution in Córdoba Argentina. Ecotoxicology and Environmental Safety, 148, 275–284.

    Article  CAS  Google Scholar 

  • Herlory, O., Bonzom, J. M., Gilbin, R., Frelon, S., Fayolle, S., Delmas, F., & Coste, M. (2013). Use of diatom assemblages as biomonitor of the impact of threated uranium mining effluent discharge on a stream: Case study of the Rotord watershed (Center-West France). Ecotoxicology, 22, 1186–1199.

    Article  CAS  Google Scholar 

  • Hinck, J. E., Cleveland, D., Brumbaugh, W. G., Linder, G., & Lankton, J. (2017). Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed. Environmental Monitoring and Assessment, 189, 56.

    Article  Google Scholar 

  • Honda, K., & Shimada, T. (2009). Occurrence of a Japanese fire-bell, Cynops pyrrhogaster, around debris dam in Atsugi, Kanagawa Prefecture, Japan. Kanagawasizenshishiryo, 30, 75–76. (in Japanese).

    Google Scholar 

  • Horne, M. T., & Dunson, W. A. (1995). Effects of low pH, metals and water hardness on larval amphibians. Archives of Environmental Contamination and Toxicology, 29, 500–505.

    CAS  Google Scholar 

  • IAEA. (2002). Monitoring and surveillance of residues from the mining and milling of uranium and thorium. IAEA.

    Google Scholar 

  • IAEA. (2005). Environmental contamination from uranium production facilities and their remediation. In: Proc. An Int. Work. Held Lisbon, Port. 11–13, Feb. 2004.

  • Imai, N., Terashima, S., Ohta, A., Mikoshiba-Ujiie, M., Okai, T., Tachibana, Y., Togashi, S., Matsuhisa, Y., Kanai, Y., Kamioka, H., & Taniguchi, M. (2004). Geochemical Map of Japan. Chishitsu News, 604, 30–36. (in Japanese).

    CAS  Google Scholar 

  • INERIS. (2008). Uranium. Toxicological and envitonmental data sheets of chemicals.

  • IUCN. (2020). red list version 2020-2. https://www.iucn.org/news/species/202007/almost-a-third-lemurs-and-north-atlantic-right-whale-now-critically-endangered-iucn-redlist

  • Jiang, Z., Xu, N., Liu, B., Zhou, L., Wang, J., Wang, C., Dai, B., & Xiong, W. (2018). Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China. Ecotoxicology and Environmental Safety, 157, 1–8.

    Article  CAS  Google Scholar 

  • Kosior, G., Steinnes, E., Samecka-Cymerman, A., Lierhagen, S., Kolon, K., Dołhanczuk-Śródka, A., & Ziembik, Z. (2017). Trace elements in native and transplanted Fontinalis antipyretica and Platyhypnidium riparioides from rivers polluted by uranium mining. Chemosphere, 171, 735–740.

    Article  CAS  Google Scholar 

  • Kraemer, L. D., & Evans, D. (2012). Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology. Aquatic Toxicol., 124–125, 163–170.

    Article  Google Scholar 

  • Le Guernic, A., Snchez, W., Bado-Niles, A., Palluel, O., Turies, C., Chadili, E., Cavalié, I., Delahaut, L., Adam-Guillermin, C., Porcher, J. M., Geffard, A., Betoulle, S., & Gagnaire, B. (2016). Insitu effects of metal contamination from former uranium mining sites on the health of the three-spined stickeback (Gasterosteus aculeatus, L.). Ecotoxicology, 25, 1234–1259.

    Article  Google Scholar 

  • Lefcort, H., Meguire, R. A., Wilson, L. H., & Ettinger, W. F. (1998). Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles. Archives of Environmental Contamination and Toxicology, 35, 447–456.

    Article  CAS  Google Scholar 

  • Linder, G. & Grillitsch, B. (2000). Ecotoxicology of metals. In; Sparling, D.W., Linder, G., Bishop, C.A. (eds) Ecotoxicology of amphibians and reptiles. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, pp325–459.

  • Marques, S. M., Antunes, S. C., Nunes, B., Gonçlves, F., & Pereira, R. (2011). Antioxidant response and metal accumulation in tissues of Iberian green frogs (Pelophylax perezi) inhabiting a deactivated uranium mine. Ecotoxicology, 20, 1315–1327.

    Article  CAS  Google Scholar 

  • Moriarty, M. M., Koch, I., Gordon, R. A., & Reimer, K. J. (2009). Arsenic speciation of terrestrial invertebrates. Environmental Science and Technology, 43, 4818–4823.

    Article  CAS  Google Scholar 

  • Muscatello, J. R., Belknap, A. M., & Janz, D. M. (2008). Accumulation of selenium in aquatic systems downsream of a uranium mining operation in northern Saskachewan Canada. Environmental Pollution, 156, 387–393.

    Article  CAS  Google Scholar 

  • Nation, J. L. (2008). Insect physiology and biochemistry -Chapter 3, Nutrition-, CRC Press, Taylor and Francis Group pp. 553, ISBN: 978–1–4200–6177–2.

  • National Institute of Advanced Industrial Science and Technology, (AIST). (2008). Geochemical and risk assessment map of subsurface soils of Tottori prefecture. Geological Survey of Japan, AIST. Digital Geoscience Map E-4 (CD-ROM).

  • Pereira, R., Antunes, S. C., Marques, S. M., & Gonçalves, F. (2008). Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): I Soil chemical characterization. Science of the Total Environment, 390, 377–386.

    Article  CAS  Google Scholar 

  • Persaud, D., Jaagumagi, R., & Hayton, A. (1992). Guidelines for the protection and management of aquatic sediment quality in Ontario.Prepare for the Ontario Ministry of the Environment.

  • P Div AF Corporation, (PDAFC). (1961). Sedimentary type uranium deposits in Ningyo-toge district and its prospecting method Kinzokukosyo 11 182 188 (in Japanese).

  • Quaranta, A., Bellantuono, V., Cassano, G., & Lippe, C. (2009). Why amphibians are more sensitive than mammals to xenobiotics. Plos One 4, e7699.

  • Saigo, M., Zilli, F. L., Marchese, M. R., & Demonte, D. (2015). Trophic level, food chain length and omnivory in the Paraná River: A food web model approach in a floodplain river system. Ecological Research, 30, 843–852.

    Article  Google Scholar 

  • Sakagami, S. (1960). Hosyasei taisekibutsu no chikyukagakutekikenkyu (Dai 2–3ho). Nihonkagakuzasshi, 81, 64–66. (in Japanese).

    Google Scholar 

  • Salbu, B., Burkitbaev, M., StrØmman, G., Shishkov, I., Kayukov, P., & Uralbekov, B. (2013). Environmental impact assessment of radionuclides and trace elements at the Kurday U mining site, Kazakhstan. Journal of Environmental Radioactivity, 123, 14–27.

    Article  CAS  Google Scholar 

  • Sample, B. E., Beauchamp, J. J., Ffroymson, R. A., Sulter, G. W. II, & Ashwood, T. L. (1998). Development and validation of bioaccumulation models for earthworms. ES/ER/TM-220. Prepared for the U.S. Department of Ridge National Laboratory, Oak Ridge, TN.

  • Sano, M., & Shinohara, M. (2012). Species comparison of frogs food habits during mating seasons in Uenohara. Yamanashi Pref. Japan. Teikyokagakudaigakukiyo, 8, 101–111. (in Japanese).

    Google Scholar 

  • Sheppard, S. C., Sheppard, M. I., Gallerand, M., & Sanipelli, B. (2005). Derivation of ecotoxicity thresholds for uranium. Journal of Environmental Radioactivity, 79, 55–83.

    Article  Google Scholar 

  • Stolyer, O. B., Loumbourdis, N. S., Falfushiska, H. I., & Romanchuk, L. D. (2008). Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 54, 107–113.

    Article  Google Scholar 

  • Stuart, S. N., Chanson, J. S., Cos, N. A., Young, B. E., Rodrigues, S. L., Fischman, D. L., & Waller, R. W. (2004). Status and trends of amphibian declines and wxtinctions worldwide. Science, 306, 1783–1786.

    Article  CAS  Google Scholar 

  • Tawa, K., Nakanishi, K., Murakami, D., Kanai, R., & Sawada, H. (2015). Habitat selection and seasonal occurrence of the Japanese newts, Cynops pyrrhogaster, in ill-drained paddy fields. Japanese Journal of Conservation Ecology, 20, 119–130.

    CAS  Google Scholar 

  • Thompson, P., Kurias, J., & Mihok, S. (2005). Derivation and use of sediment quality guidelines for ecological risk assessment of metals and radionulcides released to the environment from uranium mining and milling activities in Canada. Environmental Monitoring and Assessment, 110, 71–85.

    Article  CAS  Google Scholar 

  • Togashi, S., Imai, N., Okuyama-Kusunose, Y., Tanaka, T., Okai, T., Koma, T., & Murata, Y. (2000). Young upper crustal chemical composition of the orogenic Japan Arc. Geochemistry Geophysics Geosystems, 1, 2000GC000083.

  • Unrine, J. K., Hopkins, W. A., Romanek, C. S., & Jackson, B. P. (2007). Bioaccumulation of trace elements in omnivorous amphibian larvae: Implications for amphibian health and contaminant transport. Environmental Pollution, 149, 182–192.

    Article  CAS  Google Scholar 

  • USEPA. (1991). Technical support document for water quality-based toxics control (EPA/505/2–90–001), Washington DC.

  • Utsab, S., Pandey, N., Boro, F., Giri, S., Giri, A., & Biswas, S. (2014). Sodium arsenite induced changes in survival, growth, metamorphosis and genotoxicity in the Indian cricket frog (Rana limnocharis). Chemosphere, 112, 333–339.

    Article  Google Scholar 

  • Wake, D., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. PNAS, 105, 11466–11473.

    Article  CAS  Google Scholar 

  • Watanabe, K. (1976). Mineral paragenesis of uranium ore-minerals in the Ningyotoge deposit, Southwest Japan. Journal of Faculty Science Shinshu University, 11, 53–113 (in Japanese).

    CAS  Google Scholar 

  • Yanai, H. (2011). 4Steps Excel Tokei, Statcel 3- The usefull addin forms on Excell-3rd ed. CD-ROM, OMS Syuppan (in Japanese).

  • Yang, F., Yu, Z., Xie, S., Feng, H., Wei, C., Zhang, H., & Zhang, J. (2020). Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.138550

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), as part of the Joint Usage/Research Center—Leading Academia in Marine and Environment Pollution Research (LaMer) Project of Ehime University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawako Horai.

Ethics declarations

Ethics approval

This research study was performed with approval from each ethics committee of Tottori University and Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 45 KB)

Supplementary file2 (PPTX 151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horai, S., Murakami, S., Sakoda, A. et al. Environmental monitoring of trace elements and evaluation of environmental impacts to organisms near a former uranium mining site in Nigyo-toge, Japan. Environ Monit Assess 194, 415 (2022). https://doi.org/10.1007/s10661-022-10034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10034-7

Keywords

Navigation