Skip to main content
Log in

Sedimentation rates and sediment age of the high-altitude cold desert Ramsar Wetland, the Chandratal, inferred from radionuclide (210Pb and 137Cs) technique

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the current scenario, the pristine Himalayan Wetlands are under endangerment due to higher sedimentation rate, including siltation, reduction of ecological value, pollution, and significant anthropogenic encroachment along with advanced civilization. The more increased sedimentation reduces the depth and existing expansion of the Wetland. This study articulates the record of sedimentation in the Chandratal present in Western Himalaya, Himachal Pradesh, India, at the altitude of 4300 m. The sedimentation rate of the Chandratal was calculated based on a 1-m core sample considering isotopes of 137Cs and 210Pb dating techniques. The present study based on the Constant Rate of Supply (CRS) model of 210Pb reveals that the Wetland experienced an average sedimentation rate of 1.75 ± 0.04 cm/year during the last 63 years observed from 1953 to 2016. The 137Cs peak method–based calculated sedimentation rate of the Chandratal is 1.6 ± 0.02 cm/year representing the years for about 62 years from 1954 to 2016. The Wetland’s functional survival prevalence was estimated to be 420 and 459 years based on 210Pb and 137Cs dating techniques, respectively. The study communicates that the magnified human interference in the catchment area of the Chandratal is accountable for the faster sedimentation in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated for this study are available originally from the authors on request.

Code availability

Not applicable.

References

  • Albrecht, A., Reiser, R., Luck, A., Stoll, J. M., & Giger, W. (1998). Radiocesium dating of sediments from wetlands and reservoirs. Environmental Science and Technology, 32, 1882–1887.

    Article  CAS  Google Scholar 

  • Alhajji, E., Ismail, I. M., Al-Masri, M. S., Salman, N., Al-Haleem, M. A., & Doubal, A. W. (2014). Sedimentation rates in Wetland Qattinah using 210 Pb and 137 Cs as geochronometer. Geochronometria, 41(1), 81–86.

    Article  CAS  Google Scholar 

  • Al-Masri, M. S., Mamish, S., & Budier, Y. (2002). Radionuclides and trace metals in eastern Mediterranean Sea algae. Journal of Environmental Radioactivity, 65, 267–280.

    Google Scholar 

  • Alonso-Hernandez, C. M., Diaz-Asencio, M., Munoz-Caravaca, A., Delfanti, R., Papucci, C., Ferretti, O., & Crovato, C. (2006). Recent changes in sedimentation rates regime in Cienfuegos Bay, Cuba, as inferred from 210Pb and 137Cs vertical profiles. Continental Shelf Research, 26, 153–167.

    Article  Google Scholar 

  • Bhat, S. A., Pandit, A. K. (2014). Surface water quality assessment of Wular Wetland, A Ramsar Site in Kashmir, Himalaya, using discriminate analysis and WQI. Journal of Ecosystem, pp 1–18.

  • Callender, E., & Robbins, J. A. (1993). Transport and accumulation of radionuclides and stable elements in a Missouri River reservoir. Wat. Resour, Res., 29, 1787–1804.

    Article  CAS  Google Scholar 

  • Chakrapani, G. J. (2002).Water and sediment geochemistry of major Kumaun Himalayan Wetlands. Indian Journal Environmental Geology, 4399–107.

  • Chandrakiran, Kuldeep, S. (2013). Assessment of physico-chemical characteristics of sediments of a lower Himalayan Wetland, Mansar, India. International Research Journal of Environmental Sciences2 (9), pp 16–22.

  • Cheng, Z., Wang, X. H., Jalon-Rojas, I., & Liu, Y. (2019). Reconstruction of sedimentation changes under anthropogenic influence in a medium-scale estuary based on a decadal chronological framework. Estuarine, Coastal and Shelf Science227, 106295. https://doi.org/10.1016/j.ecss.2019.106295.

  • Das, B. K., Singh, M., & Borkar, M. D. (1994). Sedimentation accumulation rate in the Wetlands of Kumaun Himalaya, India using Pb and Ra. Environmental Geology, 23(2), 114–118.

    Article  CAS  Google Scholar 

  • Das, B. K., & Haake, B. G. (2003). Geochemistry of Rewalsar Wetland sediment, Lesser Himalaya, India: Implications for source-area weathering, provenance, and tectonic setting. Geosciences Journal, 7(4), 299–312.

    Article  Google Scholar 

  • Das, B. K., Gaye, B., & Kaur, P. (2008). Geochemistry of Renuka Wetland and Wetland sediments, lesser Himalaya (India): Implication for source-area weathering, provenance, and tectonic setting. Environmental Geology., 54, 147–163.

    Article  CAS  Google Scholar 

  • Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941.

    Article  Google Scholar 

  • Fairbridge, R. W. (1968). Glacier Wetlands. In R. W. Fairbridge (Ed.), The encyclopedia of geomorphology (pp. 444–453). Reinhold.

    Chapter  Google Scholar 

  • Henderson, G. M., Lindsay, F. N., & Slowey, N. C. (1999). Variation in bioturbation with water depth on the marine slope: A study on the Little Bahamas Bank. Marine Geology, 160, 105–118.

    Article  CAS  Google Scholar 

  • Sanchez-Cabeza, J. A., & Ruiz-Fernández, A. C. (2012). 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochem. Cosmochim. Acta, 82, 183–200.

    Article  CAS  Google Scholar 

  • Jain, A., Rai, S. C., Pal, J., Sharma, E. (1999). Hydrology and nutrient dynamics of a sacred Wetland in Sikkim Himalaya. Hydrobiology, pp 13–22.

  • Jain, C. K., Malik, D. S., Yadav R. (2007). Metal fractionation study on bed sediments of Wetland Nainital Uttaranchal, India. Environmental monitoring and assessment, pp 129–139.

  • Khadka, U. R., Ramanathan, A. L. (2013). Primary ion composition and seasonal variation in the lesser Himalayan Wetland: Case of Begnas Wetland of the Pokhara valley. Nepal., Arabian Journal of Geosciences, pp 4191–4206.

  • Krishnaswami, S., Lal, D., Martin, J. M., & Meybeck, M. (1971). Geochronology of wetland sediments. Earth and Planetary Science Letters, 11, 407–414.

    Article  Google Scholar 

  • Krishnaswamy, S., Lal, D. (1978). Radionuclide limnochronology. In: Lerman, A. (Ed.), Wetlands: Chemistry, geology, physics. Springer, pp 153–173.

  • Kull, L. A., & Ginaven, R. O. (1974). Guidelines for gamma-ray spectroscopy measurements of 235U enrichment (Vol. 50414). Brookhaven National Laboratory pp 35–48.

  • Kumar, A., Singhal, R. K., Preetha, J., Rupali, K., Narayanan, U., Suresh, S., Mishra, M. K., & Ranade, A. K. (2008). Impact of a tropical ecosystem on the migrational behaviour of K-40, Cs-137, Th-232 U-238 in perennial plants. Water Air and Soil Pollution, 192, 293–302.

    Article  CAS  Google Scholar 

  • Kumar, B., Nachiappan, Rm., & P., Rai, S. P., Kumar, U. S. and Navada, S. V.,. (1999a). Improved prediction of life of a Himalayan Wetland. Mountain Research and Development, 19, 113–121.

    Article  Google Scholar 

  • Kumar, B., Jain S. K., Nachiappan, Rm. P., Rai, S. P., Kumar V., Dungrakoto, V. C. & Rawat, Y. S. (1999b). Hydrological studies of Wetland Nainital, Kumaun Himalayas, Uttar Pradesh. Project Report, National Institute of Hydrology, Roorkee, India.

  • Kumar, B., Rai, S. P., Nachiappan, R. P., Kumar, U. S., Singh, S., & Diwedi, V. K. (2007). Sedimentation rate in North Indian Wetlands estimated using 137 Cs and 210 Pb dating techniques. Current Science (00113891), 92(10).

  • Kumar, U., Navada, S., Rao, S., Nachiappan, R. M., Kumar, B., Krishnamoorthy, T., Jha, S., & Shukla, V. (1999c). Determination of recent sedimentation rates and patterns in Wetland Naini, India by 210Pb and 137Cs dating techniques. Applied Radiation and Isotopes - Appl Radiate Isotopes., 51, 97–105. https://doi.org/10.1016/S0969-2058043(98)00148-1

    Article  CAS  Google Scholar 

  • Kumar, V., Rai, S. P., & Singh, O. (2006). Water quantity and quality of Mansar Wetland located in Himalayan foothills, India. Journal of Wetland and Reservoir Management, 22(3), 191–198.

    CAS  Google Scholar 

  • Kusumgar, S., Agrawal, D. P., & Sharma, P. (1989). Radiocarbon chronology and magnetic susceptibility variation in Kumaon Wetland sediments. Radiocarbon, 31, 957–964.

    Article  Google Scholar 

  • Kusumgar, S., Agrawal, D. P., Bhandari, N., Deshpande, R. D., Raina, A., Sharma, C., & Yadava, M. G. (1992). Wetland sediments from the Kashmir Himalayas: Inverted 14C chronology and its implications. Radiocarbon, 34(3), 561–565.

    Article  CAS  Google Scholar 

  • Liang Kangkang, Hu., Xinxin, L. S., Chengmin, H., & Ya, T. (2014). Anthropogenic effect on deposition dynamics of Wetland sediments based on 137Cs and 210Pbex techniques in Jiuzhaigou National Nature Reserve. China. Chinese Geographical Science, 24(2), 180–190. https://doi.org/10.1007/s11769-014-0665-6

    Article  Google Scholar 

  • Lu, X., & Matsumoto, E. (2005). Recent sedimentation rates derived from 210Pb and 137Cs methods in Ise Bay, Japan. Estuarine, Coastal and Shelf Science, 65, 83–93.

    Article  CAS  Google Scholar 

  • Mabit, L., Benmansour, M., Abril, J. M., Walling, D. E., Meusburger, K., Iurian, A. R., & Alewell, C. (2014). Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: A review. Earth-Science Reviews, 138, 335–351.

    Article  CAS  Google Scholar 

  • Miralles, J., Radakovitch, O., & Aloisi, J.-C. (2005). 210Pb sedimentation rates from the Northwestern Mediterranean margin. Marine Geology, 216, 155–167.

    Article  CAS  Google Scholar 

  • Mondal, D., Pal, J., Ghosh, T. K., & Biswas, A. K. (2012). Abiotic characteristics of Mirik Wetland water in the hills of Darjeeling, West Bengal, India. Advances in Applied Science Research Journal, 3(3), 1335–1345.

    CAS  Google Scholar 

  • Nautiyal, H., Bhandari, S. P., & Sharma, R. C. (2012). Physico-chemical study of Dodital Wetland in Uttarkashi District of Garhwal Himalaya. International Journal of Scientific and Technology Research, 1(5), 58–60.

    Article  Google Scholar 

  • Nozaki, Y., DeMaster, D. J., Lewis, D. M., & Turekian, K. K. (1978). Atmospheric 210Pb fluxes determined from soil profiles. Journal of Geophysical Research: Oceans, 83(C8), 4047–4051.

    Article  CAS  Google Scholar 

  • Olsen, C.R., Simpson, H.J., Peng, T.H., Bopp, R.F., Trier, R.M. (1981). Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson Estuary sediments. J. Geophys. Res. 86 (no. C11), pp 11020–11028.

  • Rai, S. P., Kumar, V., & Kumar, B. (2007a). Sedimentation rate and pattern of a Himalayan foothill lake using 137Cs and 210Pb. Hydrological Sciences Journal, 52(1), 181–191.

    Article  CAS  Google Scholar 

  • Rana, R. S., Thakur, D. R., Banyal, H. S., & Mehta, A. (2014). Avifauna of Chandertal Wetland sanctuary of District Lahaul and Spiti, Himachal Pradesh, India. Asian Journal of Biological Sciences, 7, 151–157.

    Article  Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality, 19, 215. https://doi.org/10.2134/jeq1990.00472425001900020006x

    Article  CAS  Google Scholar 

  • Robbins, J. A., & Edgington, D. N. (1975). Determination of recent sedimentation rates in Wetland Michigan using Pb-210 and Cs-137. Geochimica Et Cosmochimica Acta, 39, 285–304.

    Article  CAS  Google Scholar 

  • Rout, S. P., Vasudevan, S., & Balamurugan, P. (2021). Assessment of textural characteristics and magnetic susceptibility to understand the sedimentation environment of the Chandratal Lake, Spiti Valley, Himachal Pradesh. India. Solid State Technology, 64(2), 2450–2468.

    Google Scholar 

  • Ruiz-Fernández, A. C., Frignani, M., Hillaire-Marcel, C., Ghaleb, B., Arvizu, M. D., Raygoza-Viera, J. R., Páez-Osuna, F. (2009). Trace metals (Cd, Cu, Hg, and Pb) accumulation was recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California. Mexico. Estuar. Coasts. https://doi.org/10.1007/s12237- 009–9150–3.

  • San Miguel, E. G., Bolivar, J. P., & Garcia-Tenorio, R. (2004). Vertical distribution of Th-isotope ratios, 210Pb, 226Ra, and 137Cs in sediment cores from an estuary affected by anthropogenic releases. Sc. Tot. Environ., 318, 143–157.

    Article  CAS  Google Scholar 

  • Sanchez-Cabeza, J. A., Molero, J., Merino, J., Pujol, L. I., & Mitchell, P. I. (1995). Cs-137 as a tracer of the Catalan current. Oceanologica Acta, 18, 221–226.

    CAS  Google Scholar 

  • Sarah, S., Jeelani, G. H., Ahmed, S. (2011). Assessment variability of water quality in a groundwater-fed perennial Wetland of Kashmir Himalaya using linear geo-statistics. Journal of Earth System Science120, (3), pp 399–411.

  • Singh, S., Thakural, L. N., & Kumar, B. (2008). Estimation of sediment rates and life of Sagar Lake using radiometric dating techniques. Water Resources Management, 22(4), 443–455.

    Article  Google Scholar 

  • Smith, J. T., & Comans, R. N. J. (1996). Modeling the diffusive transport and remobilization of 137Cs in sediments: The effects of sorption kinetics and reversibility. Geochimica Et Cosmochimica Acta, 60, 995–1004. https://doi.org/10.1016/0016-7037(96)00030-0

    Article  CAS  Google Scholar 

  • Rai, S. P., Kumar, V., & Kumar, B. (2007b). Sedimentation rate and pattern of a Himalayan foothill wetland using 137Cs and 210Pb. Hydrological Sciences Journal, 52(1), 181–191. https://doi.org/10.1623/hysj.52.1.181

    Article  CAS  Google Scholar 

  • Rout, S. P., Vasudevan, S., Selvaganapathi, R., & Singh, K. K. (2020). Lake bathymetry survey and morphometric characteristics of high altitude lake and the Chandratal in western Himalaya. Journal of Critical Reviews, 7(13), 4615–4625.

    Google Scholar 

  • Walling, D. E. (2005). Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment, 344(1–3), 159–184. https://doi.org/10.1016/j.scitotenv.2005.02.011

    Article  CAS  Google Scholar 

  • Wood, A. K. H., Ahmad, Z., Shazili, N. A. M., Yaakob, R., & Carpenter, R. (1997). Geochemistry of sediments in Johore Strait between Malaysia and Singapore. Continent. Shelf Res., 17(10), 1207–1228.

    Article  Google Scholar 

  • WWF. (2005). An overview of glacial retreat and subsequent impacts in Nepal, India, and China. World Wide Fund for Nature, Nepal, pp 1–79. www.rainwaterharvesting.org/chandertal/chandertal.htm

  • Yang, H., Appleby, P. (2016). Use of lead-210 as a novel tracer for lead (Pb) sources in plants. Sci Rep 6, 21707. https://doi.org/10.1038/srep21707

  • Zaborska, A., Carroll, J., Papucci, C., & Pempkowiak, J. (2007). Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. Journal of Environmental Radioactivity, 93, 38–50.

    Article  CAS  Google Scholar 

  • Zal, U. W. M., Che, A. R. M., Yii, M. W., & Zaharudin, A. (2010). Determination of 210 Pb in marine sediment core-A comparison between alpha and gamma techniques.

  • Zapata, F. (2002). Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer Academic Publishers, pp. 219.

  • Zhang, X., Walling, D. E., Quine, T. A. (1997). Use of reservoir deposits and cesium-137 measurements to investigate the erosional response of a small drainage basin in the running loess plateau region of China. Land degradation and Development, 8(1), pp 1–16. https://doi.org/10.1002/(SICI) 1099–145X(199703)8:1<1::AIDLDR240>3.0.CO,2-X.

  • Zhang, X. B., Long, Y., He, X. B., Wen, A. B., & Yan, D. C. (2012). Use of 137Cs and 210Pbex peaks produced by events in the catchment for dating sediments in the Jiulongdian Reservoir, Chuxiong, Yunnan Province, China. IAHS, 356, 378–384.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Annamalai University, Tamil Nadu, India, for granting permission and providing our necessary equipment for the fieldwork of the Chandratal. The authors would also like to thank Parasol Camps & Retreats for their essential assistance and help during the entire period of trekking and sampling in the fieldwork domain. The authors are also immensely thankful to R.K. Singhal, Head, his research team, Analytical Spectroscopy Section, Department of Analytical Chemistry Division, Bhabha Atomic Research Centre (BARC), Mumbai, India, for requisite support at different stages of this work.

Author information

Authors and Affiliations

Authors

Contributions

Sonam Priyadarshini Rout and Sivaprakasam Vasudevan oversaw data collection and processing as well as did the statistical analysis and modeling, and produced the original manuscript draft. Contribution of study design, writing, editing, and interpretation was also done by both of them.

Corresponding author

Correspondence to Sivaprakasam Vasudevan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, S.P., Vasudevan, S. Sedimentation rates and sediment age of the high-altitude cold desert Ramsar Wetland, the Chandratal, inferred from radionuclide (210Pb and 137Cs) technique. Environ Monit Assess 194, 305 (2022). https://doi.org/10.1007/s10661-022-09984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09984-9

Keywords

Navigation