Skip to main content

Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic

Abstract

Tidal wetlands in the Mid-Atlantic, USA, are experiencing high rates of relative sea level rise, and it is unclear whether they will be resilient in the face of future flooding increases. In a previous study, we found 80% of our study areas in tidal freshwater and salt marshes in the Delaware Estuary and Barnegat Bay had elevation change rates lower than the 19-year increase in mean sea level. Here, we examine relationships between marsh elevation dynamics and abiotic and biotic parameters in order to assess their utility as indicators of vulnerability to relative sea level rise. We further apply a range of marsh vulnerability indicators including elevation change rates to evaluate their ability to corroborate marsh habitat change over the last 30 years. Of the field measurements, soil bulk density and belowground plant biomass were among the strongest predictors of elevation change and accretion dynamics across all marsh types and settings. Both tidal freshwater and salt marshes tended to have higher rates of elevation increase and surface accretion in areas where soil bulk density and live belowground biomass were higher. Nine of the ten marshes experienced a net loss of area from the 1970s to 2015 ranging from 0.05 to 14%. Although tidal freshwater marshes were low in elevation and experienced variable elevation change rates, marsh area loss was low. Conversely, salt marshes closest to the coast and perched high in the tidal frame with a higher degree of human modification tended to experience the greatest marsh loss, which incorporated anthropogenic impacts and edge erosion. Thus, our regional assessment points to the need for a comprehensive understanding of factors that influence marsh resilience including human modifications and geomorphic settings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The datasets generated and analyzed for this study are available from the corresponding author on reasonable request.

References

  • Aspila, K. I., Aspila, H., Agemian, A., & Chau, S. Y. (1976). A semiautomated method for the determination of inorganic and total phosphate in sediments. The Analyst, 101, 187–197.

    CAS  Article  Google Scholar 

  • Boon, J. D., & Mitchell, M. (2015). Nonlinear change in sea level observed at North American tide stations. Journal of Coastal Research, 31(6), 1295–1305.

    Article  Google Scholar 

  • Boyd, B. M., Sommerfield, C. K., & Elsey-Quirk, T. (2017). Hydrogeomorphic influences on salt marsh sediment accumulation and accretion in two estuaries of the US Mid-Atlantic coast. Marine Geology, 383, 132–145.

    CAS  Article  Google Scholar 

  • Bricker-Urso, S., Nixon, S. W., Cochran, J. K. et al.  (1989). Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries, 12, 300–317. https://doi.org/10.2307/1351908

  • Brophy, L. S., Greene, C. M., Hare, V. C., Holycross, B., Lanier, A., Heady, W. N., et al. (2019). Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE, 14(8), e0218558. https://doi.org/10.1371/journal.pone.0218558

    CAS  Article  Google Scholar 

  • Cahoon, D. R., & Turner, R. E. (1989). Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar Marker Horizon Technique. Estuaries, 12(4), 260–268.

    Google Scholar 

  • Cahoon, D. R., Lynch, J. C., Hensel, P., Boumans, R., Perez, B. C., Segura, B., & Day, J. W. Jr. (2002). High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research, 72(5), 730–733.

  • Callaway, J. C., DeLaune, R., & Patrick, W., Jr. (1997). Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research, 13, 181–191.

    Google Scholar 

  • Carrascal, L. M., Galvan, I., & Gordo, O. (2009). Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118, 681–690.

    Article  Google Scholar 

  • DeLaune, R. D., Baumann, R. H., & Gosselink, J. G. (1983). Relationships among: Vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology, 53, 147–157.

    Google Scholar 

  • Ekberg, M. L. C., Raposa, K. B., Ferguson, W. S., Ruddock, K., & Watson, E. B. (2017). Development and application of a method to identify salt marsh vulnerability to sea level rise. Estuaries and Coasts, 40(3), 694–710.

    Article  Google Scholar 

  • Elsey-Quirk, T. (2016). Impact of Hurricane Sandy on salt marshes of New Jersey. Estuarine, Coastal and Shelf Science, 183, 235–248.

  • Elsey-Quirk, T., Mariotti, G., Valentine, K., & Raper, K. (2019). Retreating marsh shoreline creates hotspots of high-marsh plant diversity. Scientific Reports, 9(1), 5795.

    Article  CAS  Google Scholar 

  • Elsey-Quirk, T., & Leck, M. A. (2015). Patterns of seed bank and vegetation diversity along a tidal freshwater river. American Journal of Botany, 102(12), 1996–2012.

    Article  Google Scholar 

  • Elsey-Quirk, T., Smyth, A., Piehler, M., Velinsky, D. J. (2013). Exchange of nitrogen through an urban tidal freshwater wetland Philadelphia, PA. Journal of Environmental Quality, 42, 584–595. https://doi.org/10.2134/jeq2012.0287

  • Elsey-Quirk, T. & Unger, V. (2018). Geomorphic influences on the contribution of vegetation to soil carbon accumulation and accretion in Spartina alterniflora marshes. Biogeosciences, 15, 379–397.

  • Engelhart, S. E., Peltier, W. R., & Horton, B. P. (2011). Holocene relative sea-level changes and glacial isostatic adjustment of the US Atlantic coast. Geology, 39(8), 751–754.

    Article  Google Scholar 

  • Ganju, N. K., Defne, Z., Kirwan, M. L., Fagherazzi, S., D’Alpaos, A., & Carniello, L. (2017). Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications, 814156.

  • Garner, A. J., Mann, M. E., Emanuel, K. A., Kopp, R. E., Lin, N., Alley, R. B., Horton, B. P., DeConto, R. M., Donnelly, J. P., & Pollard, D. (2017). Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proceedings of the National Academy of Sciences, 114(45), 11861–11866.

    CAS  Article  Google Scholar 

  • Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., & Silliman, B. R. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 106(1), 7–29.

    Article  Google Scholar 

  • Gittman, R. K., Fodrie, F. J., Popowich, A. M., et al. (2015). Engineering away our natural defenses: An analysis of shoreline hardening in the US. Frontiers in Ecology and the Environment, 13, 301–307.

    Article  Google Scholar 

  • Haaf, L., Watson, E. B., Elsey-Quirk, T., Raper, K., Padeletti, A., Maxwell-Doyle, M., Kreeger, D., & Velinsky, D. (2022). Sediment accumulation, elevation change, and the vulnerability of tidal marshes in the Delaware Estuary and Barnegat Bay to accelerated sea level rise. Estuaries and Coasts, 45, 413–427. https://doi.org/10.1007/s12237-021-00972-9

    Article  Google Scholar 

  • Harrell, F. E., & Dupont, C. (2019). Package Hmisc: Harrell Miscellaneous package version 4.2–0. https://cran.r-project.org/web/packages/Hmisc/index.html

  • Hartig, E. K., Gornitz, V., Kolker, A., Mushacke, F., & Fallon, D. (2002). Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay. New York City. Wetlands, 22(1), 71–89.

    Google Scholar 

  • Headlee, T. (1945). Mosquitoes of New Jersey and their control. New Brunswick: Rutgers University Press.

  • Hood, W. G., Grossman, E., & Veldhuisen, C. (2016). Assessing tidal marsh vulnerability to sea-level rise in the Skagit Delta. Northwest Science, 90, 79–93.

    Article  Google Scholar 

  • Johnson, C. S., Miller, K. G., Browning, J. V., Kopp, R. E., Khan, N. S., Fan, Y., Stanford, S. D., & Horton, B. P. (2018). The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA. Quaternary Science Reviews, 181, 30–42.

    Article  Google Scholar 

  • Kearney, M. S., Rogers, A. S., Townshend, J. R., Rizzo, E., Stutzer, D., Stevenson, J. C., & Sundborg, K. (2002). Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. EOS, Transactions American Geophysical Union, 83(16), 173–178.

    Article  Google Scholar 

  • Kennish, M. J. (2001). Coastal salt marsh systems in the US: A review of anthropogenic impacts. Journal of Coastal Research, 731–748.

  • Kirwan, M. L., & Guntenspergen, G. R. (2010). Influence of tidal range on the stability of coastal marshland. Journal of Geophysical Research, 115, F02009. https://doi.org/10.1029/2009JF001400

    Article  Google Scholar 

  • Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., & Fagherazzi, S. (2016). Overestimation of marsh vulnerability to sea level rise. Nature Climate Change., 6, 253–260.

    Article  Google Scholar 

  • Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53–60.

    CAS  Article  Google Scholar 

  • Kolker, A., Kirwan, M., Goodbred, S., & Cochran, J. (2010). Global climate changes recorded in coastal wetland sediments: Empirical observations linked to theoretical predictions. Geophysical Research Letters, 37(14), L14706.

    Article  Google Scholar 

  • Kopp, R. E. (2013). Does the Mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophysical Research Letters, 40(15), 3981–3985.

    Article  Google Scholar 

  • Krause, J. R., Watson, E. B., Wigand, C., & Maher, N. (2019). Are tidal salt marshes exposed to nutrient pollution more vulnerable to sea level rise? Wetlands. https://doi.org/10.1007/s13157-019-01254-8

  • Lathrop, R. G., Cole, M. P., & Showalter, R. D. (2000). Quantifying the habitat structure and spatial pattern of New Jersey (U.S.A.) salt marshes under different habitat regimes. Wetlands Ecology and Management, 8, 163–172.

    Article  Google Scholar 

  • Lathrop, R. G. Jr., & Bognar, J. A. (2001). Habitat loss and alteration in the Barnegat Bay region. Journal of Coastal Research, 212–228.

  • Mendelsohn, I. A., & Kuhn, N. L. (2003). Sediment subsidy: Effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering, 21, 115–128.

    Article  Google Scholar 

  • Miller, K. G., Kopp, R. E., Horton, B. P., Browning, J. V., & Kemp, A. C. (2013). A geological perspective on sea-level rise and its impacts along the US Mid-Atlantic coast. Earth’s Future, 1(1), 3–18.

    Article  Google Scholar 

  • Miller, K. M., Mitchell, B. R., & McGill, B. J. (2016). Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US. Ecological Indicators, 66, 143–152.

    CAS  Article  Google Scholar 

  • Najjar, R., Walker, H., Anderson, P., Barron, E., Bord, R., Gibson, J., Kennedy, V., Knight, C., Megonigal, J., O’Connor, R., Polsky, C., Psuty, N., Richards, B., Sorenson, L., Steele, E., & Swanson, R. (2000). The potential impacts of climate change on the Mid-Atlantic coastal region. Climate Research, 14, 219–233.

    Article  Google Scholar 

  • Narayan, S., Beck, M. W., Wilson, P., Thomas, C. J., Guerrero, A., Shepard, C. C., Reguero, B. G., Franco, G., Carter Ingram, J., & Trespalacios, D. (2017). The value of coastal wetlands for flood damage reduction in the Northeastern USA. Scientific Reports, 7(1), 9463.

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration [NOAA]. (2003). Computational techniques for tidal datums. NOAA Special Publication NOS CO-OPS 2. Silver Spring, MD: National Oceanic and Atmospheric Administration, National Ocean Service Center for Operational Oceanographic Products and Services. http://tidesandcurrents.noaa.gov/publications/Computational_Techniques_for_Tidal_Datums_handbook.pdf

  • NOAA. (2018). Tides and currents. https://tidesandcurrents.noaa.gov/

  • Nerem, B. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115, 2022–2025.

    CAS  Article  Google Scholar 

  • NJDEP. (2012). New Jersey Dept. of Environmental Protection, Trenton, NJ. Watershed Management Area 17: Maurice, Salem, Cohansey.

  • Nyman, J. A., DeLaune, R. D., & Patrick, W. H., Jr. (1990). Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: Mineral and organic matter relationships. Estuarine, Coastal and Shelf Science, 31, 57–69.

    Article  Google Scholar 

  • Odum, W. E, Smith, T. J. III, Hoover, J. K. & McIvor, C. C. (1984). The ecology of tidal freshwater marshes of the United States east coast: A community profile. U.S. Fish and Wildlife Service. FWS/OBS-83/17, 177.

  • Orson, R. A., Simpson, R. L., & Good, R. E. (1992). The paleoecological development of a late Holocene, tidal freshwater marsh of the upper Delaware River Estuary. Estuaries, 15, 130–146.

    Article  Google Scholar 

  • Parris, A., Bromirski, P., Burkett, V., Cayan, D., Culver, M., Hall, J., Horton, R., Knuuti, K., Moss, R., Obeysekera, J., Sallenger, A., & Weiss. J. (2012). Global sea level rise scenarios for the United States National Climate Assessment. NOAA Technical Report OAR CPO-1.

  • Pasternack, G. B., & Brush, G. S. (1998). Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries, 21, 407–415.

    Article  Google Scholar 

  • Paudel, B., Velinsky, D., Belton, T., & Pang, H. (2016). Spatial variability of estuarine environmental drivers and response by phytoplankton: A multivariate modeling approach. Ecological Informatics, 34, 1–12.

    Article  Google Scholar 

  • Powell, E. B., Krause, J. R., Martin, R. M. & Watson. E. B. (2020). Pond excavation reduces coastal wetland carbon dioxide assimilation. Journal of Geophysical Research-Biogeosciences, 125, e2019JG005187.

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raposa, K. B., Wasson, K., Smith, E., Crooks, J. A., Delgado, P., Fernald, S. H., Ferner, M. C., Helms, A., Hice, L. A., Mora, J. W., & Puckett, B. (2016). Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biological Conservation, 204, 263–275.

    Article  Google Scholar 

  • Reed, D. J. (1995). The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surface Processes and Landforms, 20, 39–48.

  • Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460–1482.

    CAS  Article  Google Scholar 

  • Schepers, L., Kirwan, M. L., Guntenspergen, G. R., & Temmerman, S. (2020). Evaluating indicators of marsh vulnerability to sea level rise along a historic marsh loss gradient. Earth Surface Processes and Landforms, 45, 2107–2117.

  • Slocum, M. G., Mendelssohn, I. A., & Kuhn, N. L. (2005). Effects of sediment slurry enrichment on salt marsh rehabilitation. Estuaries, 28, 519–528.

    CAS  Article  Google Scholar 

  • Smith, J. A. (2013). The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PloS ONE8(5), e65091.

  • Smith, J. A. M., Hafner, S., & Niles, L. (2017). The impact of past management practices on tidal marsh resilience to sea level rise in the Delaware Estuary. Ocean and Coastal Management, 149, 33–41.

    Article  Google Scholar 

  • Stevenson, J. C., Ward, L. G., & Kearney, M. S. (1988). Sediment transport and trapping in marsh systems: Implications of tidal flux studies. Marine Geology, 80, 37–59.

    Article  Google Scholar 

  • Sun, H., Grandstaff, D., & Shagam, R. (1999). Land subsidence due to groundwater withdrawal: Potential damage of subsidence and sea level rise in southern New Jersey, USA. Environmental Geology, 37(4), 290–296.

    Article  Google Scholar 

  • Swanson, K. M., Drexler, J. Z., Schoellhamer, D. H., Thorne, K. M., Casazza, M. L., Overton, C. T., Callaway, J. C., & Takekawa, J. Y. (2014). Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts, 37(2), 476–492.

    Article  Google Scholar 

  • Thorne, K., MacDonald, G., Guntenspergen, G., Ambrose, R., Buffington, K., Dugger, B., Freeman, C., Janousek, C., Brown, L., Rosencranz, J., Holmquist, J., Smol, J., Hargan, K., & Takekawa, J. (2018) U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Science Advances, 4, o3270. https://doi.org/10.1126/sciadv.aao3270

  • Titus, J. G., Hudgens, D. E., Trescott, D. L., et al. (2009). State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast. Environmental Research Letters, 4, 044008.

  • Turner, R. E., Swenson, E. M., & Milan, C. S. (2000). Organic and inorganic contributions to vertical accretion in salt marsh sediments. In M. P. Weinstein & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 583–595). Kluwer Academic Press.

    Google Scholar 

  • Unger, V., Elsey-Quirk, T., Sommerfield, C., & Velinsky, D. (2016). Stability of organic carbon accumulating in Spartina alterniflora-dominated salt marshes of the Mid-Atlantic US. Estuarine, Coastal and Shelf Science, 182, 179–189.

    CAS  Article  Google Scholar 

  • Velinsky, D.J., Paudel, B., Elsey-Quirk, T., Piehler, M. & Smyth, A. (2017). Salt marsh denitrification provides a significant nitrogen sink in Barnegat Bay, New Jersey. Journal of Coastal Research, Special Edition, 78, 70–78. https://doi.org/10.2112/SI78-007.1

  • Wasson, K., Ganju, N. K., Defne, Z. Endris, C., Elsey-Quirk, T., Thorne, K. M., Freeman, C., Guntenspergen, G., Nowacki, D. J., & Raposa, K. B. (2019). Understanding tidal marsh trajectories: Evaluating multiple indicators of marsh persistence. Environmental Research Letters, 14, 124073.

  • Watson, E. B., Wigand, C., Davey, E. W., Andrews, H. M., Bishop, J., & Raposa, K. B. (2017). Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts, 40(3), 662–681.

    CAS  Article  Google Scholar 

  • Watson, E. B., Haaf, L., Raper, K., & Reilly, E. (2019). Removal of positive elevation bias of digital elevation models for sea-level rise planning. Data, 4(1), 46.

    Article  Google Scholar 

  • Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., Zemla, J. (2017). Corrplot: Visualization of a correlation matrix. R. package version 0.84. https://cran.r-project.org/web/packages/corrplot/index.html

Download references

Acknowledgements

We thank Melanie Mills, Mike Archer, Linda Zaoudeh, Viktoria Unger, Paul Kiry, Paula Zelanko, Tracey Curran, Elisabeth Powell, Lin Perez, and Jessie Buckner for their contributions to the field and laboratory efforts, without whom this article would not be possible, and Metthea Yepsen for the helpful discussions. We also thank the US Fish and Wildlife Service, particularly John Heinz National Wildlife Refuge and Edwin B. Forsythe National Wildlife Refuge for the access to research sites and logistical support.

Funding

This work was supported by the New Jersey Sea Grant Consortium (NJSGC) with funds from the National Oceanic and Atmospheric Administration (NOAA) Office of Sea Grant, U.S. Department of Commerce, under NOAA grant number #NA14OAR4170085, and Pennsylvania Sea Grant (PSG) via the Pennsylvania State University sub-award #4721-ANS-NOAA-0061 with funds from NOAA under #NA10OAR4170061, and the US EPA Region 2 under a Wetlands Program Development Grant #CD97207600, and NSF Coastal SEES 1325466. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the US EPA, NJSGC, PSG, or the U.S. Department of Commerce, and the funder played no role in the study design and data interpretation, nor in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Elsey-Quirk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 703 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elsey-Quirk, T., Watson, E.B., Raper, K. et al. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic. Environ Monit Assess 194, 292 (2022). https://doi.org/10.1007/s10661-022-09949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09949-y

Keywords

  • Salt marsh
  • Tidal freshwater marsh
  • Elevation
  • Vegetation
  • Delaware Estuary
  • Barnegat Bay