Skip to main content

Advertisement

Log in

Monitoring and mapping of drought in a semi-arid region: case of the Merguellil watershed, central Tunisia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Drought is defined as a period of time characterized by below-normal water availability, which may affect crops, animals and the environment. Recently, drought was shown to be more frequent and more intense, implying thereby the need for monitoring and analysis of this natural hazard. The present study aims to examine the spatial extent and temporal variation of droughts in the Merguellil watershed, located in central Tunisia. This contribution was mainly based on the analysis of annual and monthly rainfall time series recorded over the period (1983–2018) in 19 stations spread throughout the study watershed. Rainfall trend was first examined using the Mann–Kendall statistical test. Then, statistical (standard precipitation index (SPI) and Palmer drought severity index (PDSI)), spectral (continuous wavelet transform (CWT)) and mapping (geographical information system (GIS)) techniques were used to identify extreme dry events and to characterize their severity and their spatial and temporal extents. The results obtained revealed the recurrence and frequency of drought conditions in the Merguellil watershed over the study period. Seven drought sequences (1983–1984, 1986–1989, 1992–1995, 1999–2002, 2007–2009, 2013–2015 and 2017–2018), with different levels of severity, were distinguished based on the computed SPI and PDSI values. Spectral analysis of rainfall data also showed the occurrence of significant droughts in recent years. The period starting from 2010 was shown to be marked by recurrent episodes of drought in the Merguellil watershed. Extreme drought events mapping over this period confirmed drought severity at both time and space scales. All of these findings may be helpful for developing programs of water resource management in the study watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The Tunisian Ministry of Agriculture and Water Resources provided the data used in this study.

References

  • Abdelmalek, M., & Nouiri, I. (2020). Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139311

    Article  Google Scholar 

  • Alley, W. M. (1984). The Palmer drought severity index: Limitation and assumptions. Journal of Climate and Applied Meteorology, (23), 1100–1109. https://www.researchgate.net/publication/51997439

  • Alves, T., Azevedo, P., & Farias, A. (2015). Rainfall behaviour rain and its relationship with relief in the regions Cariri of Eastern and Western State of Paraíba. Revista Brasileira De Geografia Física, 8(6), 1601–1614. https://doi.org/10.5935/1984-2295.20150090

    Article  Google Scholar 

  • Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., & Kustas, W. P. (2011). Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climatology. https://doi.org/10.1175/2010JCLI3812.1

    Article  Google Scholar 

  • Ayadi, I., Abida, H., Djebbar, Y., & Mahjoub, M. R. (2010). Sediment yield variability in central Tunisia: A quantitative analysis of its controlling factors. Hydrological Sciences J, 55(3), 446–558. https://doi.org/10.1080/02626661003741526

    Article  CAS  Google Scholar 

  • Ben Ammar, S., Zouari, K., Leduc, C., & M’barek, J. (2006). Isotopic characterization of the dam-aquifer water transfer in the Merguellil catchment (Kairouan Plain, central Tunisia). Hydrological Sciences Journal, 51(2), 272–284.

    Article  CAS  Google Scholar 

  • Ben Mimoun, M., Gargouri, K., & Ghrab, M. (2008). Long-term effects of dry conditions and drought on fruit tree yield in dryland areas of Tunisia. López-Francos A. Edition. Drought management: Scientific and technological innovations, (80), 107–12. https://www.researchgate.net/publication/23722743

  • Ben Othman, D. (2018). Contribution à l’étude de la variabilité de l’érosion hydrique dans la Dorsale Tunisienne et la Région du Cap Bon : Apports des approches statistiques, cartographiques et spectrales. Thèse de doctorat en Sciences de la Terre. Faculté des Sciences _Université de Sfax_Tunisie. p 192.

  • Ben Othman, D., Ayadi, I., Abida, H., & Laignel, B. (2016). Spatial and inter-annual variability of specific sediment yield: case of hillside reservoirs in Central Tunisia. Bulletin of Engineering Geology and the Environment77(1), 141-152. ISSN 1435- 9529. https://doi.org/10.1007/s10064-016-0976-1

  • Bergaoui., M, & Louati, M. H. (2010). Drought effects on reservoirs inflows in Tunisia: Case of Lakhmess and Siliana reservoirs. López-Francos A. Edition. Economics of drought and drought preparedness in a climate change context, 75–78. http://om.ciheam.org/om/pdf/a95/00801328.pdf

  • Bhuiyan, M. A., Rahmat, S. N., & Jayasuriya, N. (2012). Trend analysis of drought using standardised precipitation index (SPI) in Victoria, Australia. 34th Hydrology and Water Ressources Symposium. 19–22 Nov 2012, Sydney, Australia. https://www.researchgate.net/publication/251566189

  • Blunden, J., & Arndt, D. S. (2012). State of the climate in 2011. Bulletin of the American Meteorological Society (BAMS), 93(7), S1–S264.

    Article  Google Scholar 

  • Bonaccorso, B., Peres, D., Cancelliere, A., & Rossi, G. (2013). Large-scale probabilistic drought characterization over Europe. Water Resources Management, 27(6), 1675–1692. https://doi.org/10.1007/s11269-012-0177-z

    Article  Google Scholar 

  • Boudad, B., Sahbi, H., & Manssouri, I. (2019). Analysis of meteorological and hydrological drought based in SPI and SDI index in the Inaouen Basin (Northern Morocco). Journal of Materials and Environmental Sciences,  9(1), 219–227. https://doi.org/10.26872/jmes.2018.9.1.25

  • Bouzaiane, S., & Lafforgue, A. (1986). Monographie hydrologique des oueds Zéroud et Merguellil. DGRE – ORSTOM.

  • Buttafuoco, G., Caloiero, T., Ricca, N., & Guagliardi, I. (2018). Assessment of drought and its uncertainty in a southern Italy area. Measurement, 113, 205–210. https://doi.org/10.1016/j.measurement.2017.08.007

    Article  Google Scholar 

  • Christensen, J. H., Stendel, M., & Yang, S. (2012). Ways forward for climatology. In Adaptation to a changing climate in the Arab countries: A case for adaptation governance in building climate resilience, edited by D. Verner. Washington, DC: World Bank, 39–99.

  • Cudennec, C., Leduc, C., & Koutsoyiannis, D. (2007). Dryland hydrology in Mediterranean regions: A review. Hydrological Sciences, 52(6), 1077–1087. https://doi.org/10.1623/hysj.52.6.1077

    Article  Google Scholar 

  • Dabanlı, I., Mishra, A. K., & Şen, Z. (2017). Long-term spatio-temporal drought variability in Turkey. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2017.07.038

    Article  Google Scholar 

  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews Climate Change, 2, 45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Dai, A. (2013). Increasing drought under global warming in observations and models. Natural Climate Change. https://doi.org/10.1038/nclimate1633

  • Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–1005, Sept. https://doi.org/10.1109/18.57199

  • De Brito, Y. M. A., Rufino, I. A. A., Braga, C. F. C., et al. (2021). The Brazilian drought monitoring in a multi-annual perspective. Environmental Monitoring and Assessment, 193, 31. https://doi.org/10.1007/s10661-020-08839-5

    Article  Google Scholar 

  • Derdous, O., Bouamrane, A., & Mrad, D. (2020). Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: Case of the Cheliff basin–Algeria. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00951-2

    Article  Google Scholar 

  • Ellouze, M., Azri, C., & Abida, H. (2009). Spatial variability of monthly and annual rainfall data over Southern Tunisia. Journal of Atmospheric Research, 93(4), 832–839.

    Article  Google Scholar 

  • Falzoi, S., Acquaotta, F., Pulina, M. A., & Fratianni, S. (2019). Hydrological drought analysis in continental temperate and Mediterranean environment during the period 1981–2017. Italian Journal of Agrometeorology, 3, 13–23.

    Google Scholar 

  • Fekih, H., Slimani, M., & Cudennec, C. (2012). Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrological Sciences Journal, 57(7), 1294–1314.

    Article  Google Scholar 

  • Fniguire, F., Laftouhi, N., Saidi, M. M., Zamrane, Z., El Himer, H., & Khalil, N. (2016). Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco). Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-016-1873-z

    Article  Google Scholar 

  • Frigui, H. L. (2010). Sécheresse en Tunisie: Indicateurs et gestion. https://docplayer.fr/22699207

  • Glantz, M. (1994). Usable science: Food security, early warning, and El Niño. In Proceedings of the Workshop on ENSO/FEWS, Budapest, Hungary, Oct 1993 and UNEP, Nairobi; and NCAR, Boulder, Colorado.

  • Gu, L., Chen, J., Xu, C. Y., Kim, J. S., Chen, H., Xia, J., & Zhang, L. (2019). The contribution of internal climate variability to climate change impacts on droughts. Sciences of Total Environments., 684, 229–246.

    Article  CAS  Google Scholar 

  • Hayes, M. J., Svoboda, M. D., Wilhite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society., 80(3), 429–438. https://doi.org/10.1175/1520-0477(1999)080%3c0429:MTDUTS%3e2.0.CO;2

    Article  Google Scholar 

  • Heim, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorogical Society., 83(8), 1149–1166. https://doi.org/10.1175/1520-0477-83.8.1149

    Article  Google Scholar 

  • Henia, L. (2003). Les grandes sécheresses en Tunisie au cours de la dernière période séculaire p. 25–36, Université de Tunis, Faculté des sciences humaines et sociales, Tunisie © ENS Éditions. http://www.openedition.org/6540

  • Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., & Pegion, P. (2012). On the increased frequency of Mediterranean drought. Journal of Climate, 25, 2146–2161. https://doi.org/10.1175/JCLI-D-11-00296.1

    Article  Google Scholar 

  • Iglesias, E., Garrido, A., & Gomez-Ramos, A. (2003). Evaluation of drought management in irrigated areas. Agricultural Economics, 29, 211–229. https://doi.org/10.1016/S0169-5150(03)00084-7

    Article  Google Scholar 

  • Ionita, M., Scholz, P., & Chelcea, S. (2016). Assessment of droughts in Romania using the standardized precipitation index. Natural Hazards, 81, 1483–1498. https://doi.org/10.1007/s11069-015-2141-8

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2014). Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. Geneva, Switzerland, 151.

  • Jacobi, J., Perrone, D., Duncan, L. L., & Hornberger, G. (2013). A tool for calculating the Palmer drought indices. Water Resources Research. https://doi.org/10.1002/wrcr.20342

    Article  Google Scholar 

  • Jalal Uddin, M., Hu, J., & Islam, A. R. (2020). A comprehensive statistical assessment of drought indices to monitor drought status in Bangladesh. Arabian Journal Geosciences, 13, 323. https://doi.org/10.1007/s12517-020-05302-0

    Article  Google Scholar 

  • Jemai, H., & Ellouze, M. (2018). Abida H and Laignel B (2018) Spatial and temporal variability of rainfall: Case of Bizerte-Ichkeul Basin (Northern Tunisia). Arabian Journal of Geosciences, 11, 177. https://doi.org/10.1007/s12517-018-3482-x

    Article  Google Scholar 

  • Jemai, S., Ellouze, M., Agoubi, B., & Abida, H. (2016). Drought intensity and spatial variability in Gabes Watershed, south-eastern Tunisia. Journal of Water and Land Development, 31, 63–72. https://doi.org/10.1515/jwld-2016-0037. https://www.researchgate.net/publication/312408922

  • Jemai, S., Ellouze, M., & Abida, H. (2017). Variability of precipitation in arid climates using the wavelet approach: Case study of the watershed of Gabes in South-Eastern Tunisia. Atmosphere, 8, 178. https://doi.org/10.3390/atmos8090178

  • Jerbi, H. (2018). Anthropisation des processus hydrologiques autour de l’oued Merguellil Tunisie centrale: Caractérisation des formes d’évolution et quantification des flux. Thèse de doctorat en cotutelle : Universite de Montpellier/Universite de Tunis-Carthage. https://www.researchgate.net/publication/334281513

  • Kendall, M. G. (1957). Rank correlation methods. Biometrika, 44, 298. https://doi.org/10.2307/2333282

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods 4th edition. Charles Griffin, London, UK.

  • Kingumbi, A., Bargaoui, Z., & Hubert, P. (2005). Investigation of the rainfall variability in central Tunisia. Hydrological Sciences Journal, 3(50), 508. https://doi.org/10.1623/hysj.50.3.493.65027

  • Kingumbi. (2006). Modélisation hydrologique d’un bassin affecte par des changements d’occupation. Cas du Merguellil en Tunisie centrale. Thèse de doctorat. Université de Tunis El Manar Ecole nationale d'ingénieurs de Tunis.

  • Kubiak-Wójcicka, K., & Bąk, B. (2018). Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environmental Monitoring and Assessment, 190, 691. https://doi.org/10.1007/s10661-018-7058-8

    Article  Google Scholar 

  • Labat, D. (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology, 314(1), 275–288. https://www.researchgate.net/publication/222814542

  • Lacombe, G., Cappelaere, B., & Leduc, C. (2008). Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia. Journal of Hydrology, 359(3), 210–224. https://www.researchgate.net/publication/222426377

  • Laignel, B., Nouaceur, Z., Jemai, H., Abida, H., Ellouze, M., & Turki, I. (2014). Vers un retour des pluies dans le Nord-Est Tunisien. Acte du XXVIIe Colloque de l’Association Internationale de Climatologie, Dijon_France, 727–732. https://www.researchgate.net/publication/311471019

  • Lazard, M. (2013). étude des relations surface-souterrain système d’El Houareb (Tunisie Centrale) sous contraintes climatiques et anthropiques (p. P376). Thèse de doctorat: IRD, UMR G-Eau, Université de Montpellier.

    Google Scholar 

  • Lázaro, R., Rodrigo, F. S., Gutiérrez, L., Domingo, F., & Puig defábregas, J. (2001). Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. Journal of Arid Environments, 48, 373–395. https://doi.org/10.1006/jare.2000.0755

    Article  Google Scholar 

  • Leduc, C., Beji, R., & Calvez, R. (2005). Les ressources en eau du barrage d'el Houareb et des nappes adjacentes, vallée du Merguellil, Tunisie centrale. http://hal.cirad.fr/cirad-00177198/document

  • Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434

    Article  CAS  Google Scholar 

  • Li, R., Tsunekawa, A., & Tsubo, M. (2014). Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia. China. Journal of Arid Land, 6(1), 3–15. https://doi.org/10.1007/s40333-013-0193-8

    Article  Google Scholar 

  • Li, Y., Gu, W., Cui, W., Chang, Z., & Xu, Y. (2015). Exploration of copula function use in crop meteorological drought risk analysis: A case study of winter wheat in Beijing. China. Nat. Hazards Dordr., 77(2), 1289–1303.

    Article  Google Scholar 

  • Li, Y., Yao, N., Sahin, S., & Appels, W. M. (2017). Spatio-temporal variability of four precipitation-based drought indices in Xinjiang. China. Theoretical and Applied Climatology, 129(3–4), 1017–1034. https://doi.org/10.1007/s00704-016-1827-5

    Article  Google Scholar 

  • Liu, Q. S., Zhang, H., Zhang, Y., & Bai Zhang, J. (2019). Monitoring drought using composite drought indices based on remote sensing. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.134585

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Massei, N., Laignel, B., Rosero, E., Motelay‐Massei, A., Deloffre, J., Yang, Z. L., & Rossi, A. (2011). A wavelet approach to the short‐term to pluri‐decennal variability of streamflow in the Mississippi river basin from 1934 to 1998. International Journal of Climatology31(1), 31-43. https://doi.org/10.1002/joc.1995

  • Melki, A., & Abida, H. (2018). Inter-annual variability of rainfall under an arid climate: Case of the Gafsa region, Southwest of Tunisia. Arabian Journal of Geosciences, 11(18). https://doi.org/10.1007/s12517-018-3868-9

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179–183.

  • Milanovic, M., Gocic, M. L., & Trajkovic, S. (2015). Analysis of meteorological and agricultural droughts in Serbia. Facta Universitatis, Series: Architecture and Civil Engineering, 12(3), 253–264. https://doi.org/10.2298/FUACE1403253M

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216.

    Article  Google Scholar 

  • Nouaceur, Z., Laignel, B., & Turki, I. (2013). Changements climatiques au Maghreb: Vers des conditions plus humides et plus chaudes sur le littoral algérien ? Physiogeo Journal, 7–1, 307–323. https://doi.org/10.4000/physio-geo.3686

    Article  Google Scholar 

  • Nouaceur, Z., Laignel, B., Imen, T., & Jemai, H. (2014). Climate change in Northern Africa: Towards a return of rainfall on the southern Mediterranean basin. In Proceedings of the Air and Water Components of the Environment, (48–55).

  • Nouaceur, Z., & Murărescu, O. (2016). Variability of precipitation and trend analysis of annual rainfall in North Africa. International Journal of Atmospheric Sciences, ID:7230450.

  • Nouiri, I., Nasri, S., & Tahrani, M. (2014). Drought management in Tunisia. National capacity development training of trainer’s workshop on developing and implementing mitigation and preparedness water scarcity and drought management plans, Zaragoza_Spain.

  • Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.

  • Parente, J., Amraoui, M., Menezes, I., & Pereira, M. G. (2019). Drought in Portugal: Current regime, comparison of indices and impacts on extreme wildfires. Sciences of Total Environment, 685, 150–173.

    Article  CAS  Google Scholar 

  • R Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Romanou, A., Tselioudis, G., Zerefos, C. S., Clayson, C. A., Curry, J. A., & Andersson, A. (2010). Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. Journal of Climate, 23, 5268–5287. https://doi.org/10.1175/2010JCLI3525.1

    Article  Google Scholar 

  • Rustum, R., Adeloye, A. J., & Mwale, F. (2017). Spatial and temporal trend analysis of long-term rainfall records in data-poor catchments with missing data, a case study of Lower Shire floodplain in Malawi for the period (1953–2010). Hydrology and Earth System Sciences Discuss. https://doi.org/10.5194/hess-2017-601

  • Saadi, S. (2018). Spatial estimation of actual evapotranspiration and irrigation volumes using water and energy balance models forced by optical remote sensing data (VIS / NIR / TIR). PhD dissertation. University Toulouse 3: Paul Sabatier and INAT_University of Carthage. https://www.researchgate.net/publication/323542990

  • Schneider, K., & Farge, M. (2006). Wavelets: Theory. Encyclopedia of Mathematics Physics, 426–438.

  • Shaman, J. (2014). The seasonal effects of ENSO on European precipitation: Observational analysis. Journal of Climate, 27, 6423–6438. https://doi.org/10.1175/JCLI-D-14-00008.1

    Article  Google Scholar 

  • Sheffield, J., Wood, E., & Roderick, M. (2012). Little change in global drought over the past 60 years. Nature, 491, 435–438. https://doi.org/10.1038/nature11575

    Article  CAS  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. H. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society (BAMS), 93, 485–498.

    Article  Google Scholar 

  • Thornthwaite, C. W., Mather, J. A., & Thornthwaite, W. (1955). The water balance: Publications in Climatology, Laboratory of Climatology, vol. 8.

  • Turki, I., Laignel, B., Massei, N., Nouaceur, Z., Benhamiche, N., & Madani, K. (2016). Hydrological variability of Soummam watershed (Northeastern Algeria) and possible links to climate fluctuations. Arabian Journal Geosciences, (9):477. https://doi.org/10.1007/s12517-016-2448-0

  • Van del Schrier, G., Briffa, K. R., Jones, P. D., & Osborn, TJ. (2006). Summer moisture variability across Europe. Journal of Climate, 19, 2818–2834.

    Article  Google Scholar 

  • Van Loon, A. F., & Van Lanen, H. A. (2013). Making the distinction between water scarcity and drought using an observation-modelling framework. Water Resources Research, 49(3), 1483–1502. https://doi.org/10.1002/wrcr.20147

    Article  Google Scholar 

  • Verner, D., Treguer, D., Redwood, J., Christensen, J., McDonnell, R., Elbert, C., & Konishi, Y. (2018). Climate variability, drought, and drought management in Tunisia’s agricultural sector. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/30604

  • Verner, D. (2012). Adaptation to a changing climate in the Arab countries: A case for adaptation governance and leadership in building climate resilience. World Bank.

    Book  Google Scholar 

  • Verner, D. (2013). Tunisia in a changing climate. World Bank.

    Book  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index (SPEI). Journal of Climate, 23, 1696. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Wang, K., Li, Q. F., & Yang, Y. (2015). Analysis of spatiotemporal evolution of droughts in Luanhe River Basin using different drought indices. Water Science and Engineering, 8, 282–290. https://doi.org/10.1016/j.wse.2015.11.004

    Article  Google Scholar 

  • Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, 111–120. https://doi.org/10.1080/02508068508686328

    Article  Google Scholar 

  • Wilhite, D. A., Sivakumar, M. V. K., & Wood, D. A. (2000). Early warning systems for drought preparedness and drought management. Proceedings of an Expert Group Meeting. World Meteorological Organization. (pp. 148–151).

  • WMO (World Meteorological Organization). (2014). National drought management policy guidelines: A template for action. Geneva: WMO and GWP. http://digitalcommons.unl.edu/droughtfacpub/83

  • Xu, K., Milliman, J. D., & Xu, H. (2010). Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Global and Planetary Change, 73, 219–232.

    Article  Google Scholar 

  • Yao, N., Li, Y., Li, N., Yang, D., & Ayantobo, O. (2018). Bias correction of precipitation data and its effects on aridity and drought assessment in China over 1961–2015. Science of the Total Environment, 639, 1015–1027. https://doi.org/10.1016/j.scitotenv.2018.05.243

    Article  CAS  Google Scholar 

  • Zahar, Y. (2014a). Gestion des ressources en eau de surface en Tunisie centrale dans un contexte d’aridité ambiante, de crues historiques extrêmes et d’un réchauffement prédictif du climat. Approche par modèle stochastique. Conference Paper. https://www.researchgate.net/publication/285471267

  • Zahar, Y. (2014b). Une hydrologie des extrêmes, inondations et sécheresses: éléments choisis de caractérisation en tunisie. Conference paper. https://www.researchgate.net/publication/285471369

  • Zamrane, Z., Laftouhi, N., Mahé, G., & Laignel, B. (2016a). Relationship between climate index (WMOI, SOI) and variability of precipitation in Azib Soltane (Sebou basin Marocco. Journal of Environmental Earth Sciences, 6, 34–42.

    Google Scholar 

  • Zamrane, Z., Turki, I., Laignel, B., Mahe, G., & Laftouhi, N. (2016b). Characterization of the interannual variability of precipitation and streamflow in Tensift and Ksob basins (Morocco) and links with the NAO. Atmosphere, 7, 84. https://doi.org/10.3390/atmos7060084

    Article  Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940–943. https://doi.org/10.1126/science.1192666

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Tunisian Ministry of High Education and Scientific Research under the Federated Research Project PRF AS-HYDRO-2019-D1P6 (Approche Systémique de la gestion des Ressources en Eau et Employabilité des Compétences Vertes).

Author information

Authors and Affiliations

Authors

Contributions

Dhouha Ben Othman performed data collection, material preparation, analysis and writing of the manuscript first draft. Habib Abida contributed in defining the study objectives and methodology and in the discussion of the obtained results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dhouha Ben Othman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Othman, D., Abida, H. Monitoring and mapping of drought in a semi-arid region: case of the Merguellil watershed, central Tunisia. Environ Monit Assess 194, 287 (2022). https://doi.org/10.1007/s10661-022-09926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09926-5

Keywords

Navigation