Skip to main content
Log in

The impact of long-term environmental change on zooplankton along the southwestern coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental pollution and climate change are causing major changes in the marine environment. Coastal zones around the world are experiencing changes such as nutrient influx, resulting in altered plankton communities. The aim of this study was to determine the response of zooplankton to the changes in the environmental variables in the coastal zone of the Arabian Sea, Southwest Coast of India, over 10 years. Zooplankton abundance, chlorophyll-a concentrations, and water quality variables (rainfall, nitrates, phosphates, pH, water temperature, and salinity) were quantified from January 2010 to December 2019. Water temperature, pH, salinity, and phosphates increased steadily across the sites during the study period whereas chlorophyll-a and nitrates decreased. Rainfall abundance was not exhibiting any patterns or trends. The effects of the sampled environmental variables on zooplankton abundance were tested using generalized linear mixed models. Salinity and phosphates negatively affected the zooplankton abundance whereas water temperature, pH, and chlorophyll-a concentration had a positive effect. Coastal zones in southwest India are experiencing declining phytoplankton abundance due to a number of environmental factors. Reduced phytoplankton combined with altered environmental variables are having declining effects on zooplankton. This decline in zooplankton population has far reaching effects on biota in higher trophic levels including economically important organisms such as fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Will be provided based on the requirement, from the editorial office.

References

  • Aarif, K. M., Prasadan, P. K., & Babu, S. (2011). Conservation significance of the Kadalundi-Vallikkunnu Community Reserve. Current Science, 101, 717–718.

    Google Scholar 

  • Aarif, K. M., Muzaffar, S. B., Babu, S., & Prasadan, P. K. (2014). Shorebird assemblages respond to anthropogenic stress by altering habitat use in a wetland in India. Biodiversity and Conservation, 23, 727–740.

    Article  Google Scholar 

  • Aarif, K. M., Nefla, A., Muzaffar, S. B., Musammilu, K. K., & Prasadan, P. K. (2017). Traditional fishing activities enhance the abundance of selected waterbird species in a wetland in India. Avian Research, 8, 1–10.

    Article  Google Scholar 

  • Aarif, K. M., & Musammilu, K. K. (2018). Pivotal reasons for the decline of shorebirds in Kadalundi-Vallikkunnu community reserve, a key stop-over site in the west coast of India. Asian Journal of Conservation Biology, 7(1), 46–50.

    Google Scholar 

  • Aarif, K. M., Kaiser, S. A., Nefla, A., & Almaarofi, S. S. (2020). Over-summering abundance, species composition, and habitat use patterns at a globally important site for migratory shorebirds. The Wilson Journal of Ornithology, 132(1), 165–172.

    Article  Google Scholar 

  • Aarif, K. M., Nefla, A., Nasser, M., Prasadan, P. K., Athira, T. R., & Muzaffar, S. B. (2021a). Multiple environmental factors and prey depletion determine declines in abundance and timing of departure in migratory shorebirds in the west coast of India. Global Ecology and Conservation, 26(1).

  • Aarif, K. M., Nefla, A., Athira, T. R., Prasadan, P. K., & Muzaffar, S. B. (2021b). The costs of migration: Injuries in migratory waterbirds along the west coast of India. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2021.07.080

    Article  Google Scholar 

  • Acabado, C. S., Campos, W. L., Noblezada, M. M. P., & Esremadura, D. M. G. (2010). A comparison of zooplankton assemblages in a coastal upwelling and offshore station in East Sulu Sea. Science Diliman, 22(2), 51–60.

    Google Scholar 

  • Akter, R., Asik, T. Z., Sakib, M., Akter, M., Sakib, M. N., Al Azad, A. S. M., & Rahman, M. (2019). The dominant climate change event for salinity intrusion in the GBM delta. Climate, 7, 69. https://doi.org/10.3390/cli7050069

  • Alcaraz, M., & Calbet, A. (2003). Zooplankton ecology, in Marine Ecology. Encyclopedia of Life Support Systems (EOLSS), eds C. Duarte and A. Lott Helgueras (Oxford: Developed under the Auspices of the UNESCO, Eolss Publishers), 295–318.

  • Amos, C. L., Rashidi, T. A., Rakha, K., El-Gamily, H., & Nicholls, R. (2013). Sea surface temperature trends in the coastal ocean. Current Development Oceanography, 6, 1–13.

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed., p. 125). American Public Health Association.

    Google Scholar 

  • Atkinson, A., Harmer, R. A., Widdicombe, C. E., McEvoy, A. J., Smyth, T. J., Cummings, D. G., & McConville, K. (2015). Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Progress in Oceanography137, 498–512. https://doi.org/10.1016/j.pocean.2015.04.023

  • Attrill, M. (2009). Sea Temperature Change as an Indicator of Global Change. https://doi.org/10.1016/B978-0-444-53301-2.00019-1

    Article  Google Scholar 

  • Balasubramanian, A. (2011). Aquaticecosystems –Marine types. University of Mysore, 9 p.

  • Beaugrand, G. (2003). Long-term changes in copepod abundance and diversity in the North-East Atlantic in relation to fluctuations in the hydroclimatic environment. Fisheries Oceanography, 12, 270–283.

    Article  Google Scholar 

  • Beaugrand, G. (2005). Monitoring pelagic ecosystems using plankton indicators. ICES Journal of Marine Science, 62, 333–338. https://doi.org/10.1016/j.icesjms.2005.01.002

    Article  Google Scholar 

  • Beaugrand, G., & Kirby, R. R. (2018). How do marine pelagic species respond to climate change? Theories and observations. Annual Review of Marine Science, 10169–197. https://doi.org/10.1146/annurevmarine-121916-063304

  • Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity. The Ray Society, (Part 1): pp. I-XV, 1–421. (Part.II): pp. V-VII, 422–966.

  • Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P., Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M., Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H., McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., & Portner, H.-O. (2018). Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 24, 2239–2261. https://doi.org/10.1111/gcb.14102

  • Bradford, J. M. (1972). Systematics and ecology of New Zealand Central east coast plankton sampled at Kaikoura. Memoirs. N.Z. Oceangraphy Institution, 54, 1–87.

    Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and inference: A practical information-theoretic approach (2nd ed.). Springer-Verlag.

    Google Scholar 

  • Butler, R. W., Davidson, N. C., & Morrison, R. I. G. (2001). Global-scale shorebird distribution in relation to productivity of near-shore ocean waters. Waterbirds, 24(2), 224–232.

    Article  Google Scholar 

  • Capuzzo, E., Lynam, C. P., Barry, J., Stephens, D., Forster, R. M., Greenwood, N., McQuatters-Gollop, A., Silva, T., Van Leeuwen, S. M., & Engelhard, G. H. (2017). A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Global Change Biology, 24, e352–e364. https://doi.org/10.1111/gcb.13916

    Article  Google Scholar 

  • Caroni, R., & Irvine, K. (2010). The potential of zooplankton communities for ecological assessment of lakes: Redundant concept or political oversight? Biology and Environment: Proceedings of the Royal Irish Academy, 110(1), 35–53.

    Article  Google Scholar 

  • Chiba, S., Tadokoro, K., Sugisaki, H., & Saino, T. (2006). Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Global Change Biology, 12, 907–920. https://doi.org/10.1111/j.1365-2486.2006.01136.x

    Article  Google Scholar 

  • Dere, S., Gunes, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll - A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22, 13–17.

    Google Scholar 

  • Doo, S. S. (2020). The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science, 77, 2411–2422.

    Article  Google Scholar 

  • El Kateb, A., Stalder, C., Rüggeberg, A., Neururer, C., Spangenberg, J. E., & Spezzaferri, S. (2018). Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia). PLoS ONE, 13, e0197731. https://doi.org/10.1371/journal.pone.0197731

    Article  CAS  Google Scholar 

  • Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., Turley, C. (2015). Oceanography. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 3, 349(6243), aac4722. https://doi.org/10.1126/science.aac4722. PMID: 26138982.

  • Goswami, S. C. (2004). Zooplankton methodology, collection and identification - A field manual. National Institute of Oceanography, 26.

  • Grecian, W. J., Witt, M. J., Attrill, M. J., Bearhop, S., Becker, P. H., Egevang, C., Furness, R. W., Godley, B. J., González-Solís, J., Grémillet, D., Kopp, M., Lescroël, A., Matthiopoulos, J., Patrick, S. C., Peter, H. U., Phillips, R. A., Stenhouse, I. J., & Votier, S. C. (2016). Seabird diversity hotspot linked to ocean productivity in the Canary Current Large Marine Ecosystem. Biology Letters, 12(8), 20160024. https://doi.org/10.1098/rsbl.2016.0024

    Article  Google Scholar 

  • Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis (3rd ed.). Macmillan.

    Google Scholar 

  • Harris, R. P., Wiebe, P. H., Lens, J., Skjoldal, H. R., & Huntley, M. (2000). ICES Zooplankton methodology manual (p. 684). Academic Press.

    Google Scholar 

  • Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology & Evolution, 20, 337–344. https://doi.org/10.1016/j.tree.2005.03.004

    Article  Google Scholar 

  • Hollowed, A. B., Barange, M., Beamish, J. R., Brander, K., Cochrane, K., Drinkwater, K., Foreman, G. G. M., Hare, J. A., Holt, J., Ito, S., Kim, S., King, J. R., Loeng, H., MacKenzie, R. B., Mueter, F. J., Okey, T. H., Peck, M. A., Radchenko, V. I., Rice, J. C., Yamanaka, Y. (2013). Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science, 70(5), 1023–1037. https://doi.org/10.1093/icesjms/fst081

    Article  Google Scholar 

  • Ji, R. B., Edwards, M., Mackas, D. L., Runge, J. A., & Thomas, A. C. (2010). Marine plankton phenology and life history in a changing climate: Current research and future directions. Journal of Plankton Research, 32, 1355–1368.

    Article  Google Scholar 

  • Kehayias, G., Chalkia, E., & Doulka, E. (2014). Zooplankton variation in five Greek lakes. In G. Kehayias (Ed.), Zooplankton (pp. 85–119). Nova Science Publishers, Inc.

    Google Scholar 

  • Kasturirangan, L. R., Saraswathy, M., & Gopalakrishnan, T. C. (1973). Distribution of Copepoda in the Indian Ocean. In B. Zietzschel & S. A. Gerlac (Eds.), The Biology of the Indian Ocean (pp. 331–333). Springer-Verlag.

    Chapter  Google Scholar 

  • Kelly, K. J., Fu, F.-X., Jiang, X., Li, H., Xu, D., Yang, N., DeMers, M. A., Kling, J. D., Gao, K., Ye, N., & Hutchins, D. A. (2021). Interactions between ultraviolet b radiation, warming, and changing nitrogen source may reduce the accumulation of toxic pseudo-nitzschia multiseries biomass in future coastal oceans. Frontiers in Marine Science, 8, 664302. https://doi.org/10.3389/fmars.2021.664302

    Article  Google Scholar 

  • Le, C., Wu, S., Hu, C., Beck, M. W., & Yang, X. (2019). Phytoplankton decline in the eastern North Pacific transition zone associated with atmospheric blocking. Global Change Biology. https://doi.org/10.1111/gcb.14737

    Article  Google Scholar 

  • Lewandowska, A. M., Boyce, D. G., Hofmann, M., Matthiessen, B., Sommer, U., & Worm, B. (2014). Effects of sea surface warming on marine plankton. Ecology Letters, 17, 614–623.

    Article  Google Scholar 

  • Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, W. W., Galbraith, E. D., & Worm, B. (2019). Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences116(26), 12907–12912. https://doi.org/10.1073/pnas.1900194116

  • Madhupratap, M., Nair, K. N. V., Gopalakrishnan, T. C., Haridas, P., Nair, K. K. C., Venugopal, P., & Gauns, M. (2001). Arabian Sea oceanography and fisheries of the West coast of India. Current Science, 81, 355–361.

    Google Scholar 

  • Manríquez, K., Escribano, R., & Hidalgo, P. (2009). The influence of coastal upwelling on the mesozooplankton community structure in the coastal zone off Central/Southern Chile as assessed by automated image analysis, Journal of Plankton Research, 31(9), 1075–1088. https://doi.org/10.1093/plankt/fbp053

  • Martinez, E., Antoine, D., D’Ortenzio, F., & Gentili, B. (2009). Climate driven basin-scale decadal oscillations of oceanic phytoplankton. Science, 326(5957), 1253–1256. https://doi.org/10.1126/science.1177012

    Article  CAS  Google Scholar 

  • McQuatters-Gollop, A., Atkinson, A., Aubert, A., Bedford, J., Best, M., Bresnan, E., Cook, K., Devlin, M., Gowen, R., Johns, D. G., Machairopoulou, M., McKinney, A., Mellor, A., Ostle, C., Scherer, C., & Tett, P. (2019). Plankton lifeforms as a biodiversity indicator for regional-scale assessment of pelagic habitats for policy. Ecological Indicators, 101, 913–925.

    Article  Google Scholar 

  • McGowan, S., Leavitt, P. R., Barker, T., & Moss, B. (2020). Shallow water phytoplankton responses to nitrate and salinity enrichment may be modified by benthic processes. Inland Waters, 10, 137–151. https://doi.org/10.1080/20442041.2019.1634948

  • Murphy, G. E. P., Romanuk, T. N., & Worm, B. (2019). Cascading effects of climate change on plankton community structure. Ecology and Evolution, 10, 2170–2181.

    Article  Google Scholar 

  • Musale, A. S., & Desai, D. V. (2011). Distribution and abundance of macrobenthic polychaetes along the South Indian coast. Environmental Monitoring and Assessment, 178(1–4), 423–436.

    Article  CAS  Google Scholar 

  • Nandy, T., & Mandal, S. (2020). Unravelling the spatio-temporal variation of the zooplankton community from the river Matla in the Sundarbans Estuarine System, India, Oceanologia, 62(3). ISSN, 326–346, 0078–3234. https://doi.org/10.1016/j.oceano.2020.03.005

    Article  Google Scholar 

  • Nayak, G. N. (2005). Indian Ocean coasts, coastal geomorphology. In Encyclopedia of Coastal Science (Schwartz ed). Springer press, 555p.

  • O’Mara, N., & Dunne, J. P. (2019). Hot spots of carbon and alkalinity cycling in the coastal oceans. Scientific Reports, 9(1), 4434.

    Article  Google Scholar 

  • O'Mara, N., & Dunne, J. P. (2020). Author Correction: Hot Spots of Carbon and Alkalinity Cycling in the Coastal Oceans. Scientific Report, 10(1), 8625. https://doi.org/10.1038/s41598-020-65546-4. Erratum for: Sci Rep. 2019 Mar 14;9(1):4434. PMID: 32433534; PMCID: PMC7239874.

  • Opdal, A. F., Lindemann, C., & Aksnes, D. L. (2019). Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Global Change Biology, 25, 3946–3953.

    Article  Google Scholar 

  • Piontkovski, S. A., & Castellani, C. (2009). Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia, 632(1), 365–370.

    Article  Google Scholar 

  • Pitchaikani, J. S., & Lipton, A. P. (2016). Nutrients and phytoplankton dynamics in the fishing grounds off Tiruchendur coastal waters, Gulf of Mannar. IndiaSpringerplus, 5, 1405.

    Article  Google Scholar 

  • Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., de Souza, S. N., Sardesai, S., & Madhupratap, M. (2002). Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophysical Research Letter, 29, 88–1–88–4. https://doi.org/10.1029/2002GL016013

  • Rajagopalan, M. S., Thomas, P. A., Mathew, K. J., Selvaraj, G. D., George, R. M., Mathew, C. V., & Antony, G. (1992). Productivity of the Arabian Sea along the southwest coast of India. CMFRI Bulletin45, 9-37.

    Google Scholar 

  • Rajkumar, M., Perumal, P., & Ashok Prabhu, V. (2009). Diversity of phytoplankton in Pichavaram mangrove waters, southeast coast of India. Journal of Environmental Biology, 30, 489–498.

    CAS  Google Scholar 

  • Rajkumar, M., Azhagar, S., Sun, J., Jenkinson, I. R., Rahman, M. M., Serebiah, J. S. (2020). Seasonal variations of plankton in Kodiakkarai and Arukattuthurai on the Vedharanyam coast, South India, Regional. Studies in Marine Science, 101461, ISSN 2352–4855. https://doi.org/10.1016/j.rsma.2020.101461

  • Raymont, J. E. E. (1963). Plankton and productivity in the Oceans. Part 2, Zooplankton, Pergamon Press Oxford, New york. toronto. Sydney.

  • Richardson, A. J. (2008). In hot water: Zooplankton and climate change. ICES Journal of Marine Science, 65(3), 279–295. https://doi.org/10.1093/icesjms/fsn028

    Article  Google Scholar 

  • Sahu, B. K., Pati, P., & Panigrahy, R. C. (2018). Impact of climate change on marine plankton with special reference to Indian Seas. Indian Journal of Geo Marine Sciences, 47(2), 259–268.

    Google Scholar 

  • Sahu, G., Satpathy, K. K., Mohanty, A. K., & Sarkar, S. K. (2012). Variations in community structure of phytoplankton in relation to physicochemical properties of Coastal waters, Southeast Coast of India. Indian Journal Geo-Marine Science, 41, 223–241.

    CAS  Google Scholar 

  • Salinger, M. J., Bell, J. D., Evans, K., Hobday, A. J., Allain, V., Brander, K., Dexter, P., Harrison, D. E., Hollowed, A. B., Lee, B., & Stefanski, R. (2013). Climate and oceanic fisheries: Recent observations and projections, and future needs. Climate Change. https://doi.org/10.1007/s10584-012-0652-9

    Article  Google Scholar 

  • Santhikrishnan, S., Jyothibabu, R., Albin, K. J., Alok, K. T., Karnan, C., Arunpandi, N., Camey, M. F., & Kumar, T. G. (2021). Biophysical implications of the freshwater influx over small spatial scale in the coastal waters along the southwest coast of India during the Southwest Monsoon. Continental Shelf Research, 214, 104337. https://doi.org/10.1016/j.csr.2020.104337

    Article  Google Scholar 

  • Sarker, M. J., Rashid, F. B., & Tanmay, M. H. (2016). Assessment of coastal water habitat with reference to the variability of plankton during spawning season of indian river shad in Greater Noakhali-Bangladesh. Journal of Ecosystem & Ecography, 6, 2.

    Article  Google Scholar 

  • Sarma, V. S. S., Vivek, R., Rao, D. N., Ghosh, V. R. D. (2020). Severe phosphate limitation on nitrogen fixation in the Bay of Bengal. Continental Shelf Research, 205, 104199.

  • Schmidt, K., Birchill, A. J., Atkinson, A., Brewin, R. J. W., Clark, J. R., Hickman, A. E., Johns, D. G., Lohan, M. C., Milne, A., Pardo, S., Polimene, L., Smyth, T. J., Tarran, G. A., Widdicombe, C. E., Woodward, E. M. S., & Ussher, S. J. (2020). Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Global Change Biology, 26(10), 5574–5587. https://doi.org/10.1111/gcb.15161

    Article  Google Scholar 

  • Senthilkumar, S., Vinodh, K., Babu, G. J., Gowtham, B., & Arulprakasam, V. (2019). Integrated seawater intrusion study of coastal region of Thiruvallur district, Tamil Nadu. South India Applied Water Science, 9, 124. https://doi.org/10.1007/s13201-019-1005-x

    Article  CAS  Google Scholar 

  • Shivaramu, M. S., Randive, A. K., Kumari, R., Gauns, M., & Ponnapakkam, L. A. (2019). Spatiotemporal variation of alkaline phosphatase activity in coastal waters off Trivandrum. Oceanologia, 61, 170–177. https://doi.org/10.1016/j.oceano.2018.06.004

    Article  Google Scholar 

  • Solanki, D., Jignesh, K., Imtiyaz, B., & Bharatsinh, G. (2016). Checklist of intertidal marine fauna in mangrove ecosystem, Ghogha coast, Gulf of Khambhat, India. Journal of Entomology and Zoology Studies, 4–4, 1281–1284.

    Google Scholar 

  • Stat Soft Inc. (2013). Electronic statistics textbook. Tulsa, OK.

  • Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the ocean carbon cycle. Annual Review of Marine Science, 9, 413–444. https://doi.org/10.1146/annurev-marine-010814-015924

    Article  Google Scholar 

  • Su, J., Cai, W., Brodeur, J., Chen, B., Hussain, N., Yao, Y., Ni, C., Testa, J. M., Li, M., Xie, X., Ni, W., Scaboo, K. M., Xu, Y., Cornwell, J., Gurbisz, C., Owens, M. S., Waldbusser, G. G., Dai, M., & Kemp, W. M. (2020). Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nature Geoscience. https://doi.org/10.1038/s41561-020-0584-3

    Article  Google Scholar 

  • Sushanth, V. R., & Rajashekhar, M. (2014). Seasonal assessment of hydrographic variables and phytoplankton community in Arabian Sea waters of Kerala, South-west coast of India. Brazilian Journal of Oceanography, 62(4), 279–293. https://doi.org/10.1590/S1679-87592014069906204

    Article  Google Scholar 

  • Tarafdar, L., Kim, J. Y., Srichandan, S., Mohapatra, M., Muduli, P. R., Kumar, A., Mishra, D. R., & Rastogi, G. (2021). Responses of phytoplankton community structure and association to variability in environmental drivers in a tropical coastal lagoon. Science Total Environment, 146873.

  • Thillai, R. K., Mayalagu, R., Jun, S., Prabu, V. A., & Perumal, P. (2010). Seasonal variations of phytoplankton diversity in the Coleroon coastal waters, southeast coast of India. Acta Oceanologica Sinica, 29(5), 97–108.

    Article  CAS  Google Scholar 

  • Vajravelu, M., Martin, Y., Ayyappan, S., & Mayakrishnan, M. (2018). Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114–127, ISSN 0078-3234. https://doi.org/10.1016/j.oceano.2017.08.003

  • Vijayan, A. K., Reddy, B. B., Valliyodan, S., Marathe, P. H., Namboothiri, S. V. N., Harikrishnachari, N. V., Kavya, P., Gupta, G. V. M., & Ramanamurthy, M. V. (2021). Phytoplankton community structure in a contrasting physico- chemical regime along the eastern Arabian Sea during the winter monsoon. Journal of Marine Systems. https://doi.org/10.1016/j.jmarsys.2020.103501

    Article  Google Scholar 

  • Vinayachandran, P. N., Chauhan, P., Mohan, M., & Nayak, S. (2004). Biological response of the Sea around Sri Lanka to summer monsoon. Geophysical Research Letters, 31, L01302.

  • Williamson, P., & Guinder, V. A. (2021). Chapter 5 - Effect of climate change on marine ecosystems, Editor(s): Trevor M. Letcher. The Impacts of Climate Change, Elsevier, 115–176. https://doi.org/10.1016/B978-0-12-822373-4.00024-0

  • Xiu, P., Chai, F., Curchitser, E. N., & Castruccio, F. (2018). Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

  • Zhang, C. (2021). Responses of summer upwelling to recent climate changes in Taiwan Strait. Remote Sens, 13, 1368.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to all our volunteers for their timely support in the different fields.

Funding

The first (08/739(0001)/2019-EMR-I) and third (08/739(0005/2021-EMR-I) authors acknowledge the funding support of UGC-CSIR, India.

Author information

Authors and Affiliations

Authors

Contributions

T.R. Athira: investigation, writing-original draft; Aymen Nefla: formal analysis; C.T. Shifa: writing-review and editing; H. Shamna: writing-review and editing; K.M. Aarif: conceptualization, writing-review and editing; Sama S. AlMaarofi: writing-review and editing; A. P. Rashiba: data curation; Omer R. Reshi: software, visualization; T. Jobiraj: resources; P. Thejass: resources; Sabir Bin Muzaffar: investigation, supervision, writing-review and editing.

Corresponding authors

Correspondence to Aymen Nefla or Sabir Bin Muzaffar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Table 3 Variance inflation factors (VIF) to check for multicollinearity of variables used in models explaining zooplankton abundance variation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, T.R., Nefla, A., Shifa, C.T. et al. The impact of long-term environmental change on zooplankton along the southwestern coast of India. Environ Monit Assess 194, 316 (2022). https://doi.org/10.1007/s10661-022-09921-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09921-w

Keywords

Navigation