Skip to main content
Log in

Radiological risk assessment in sediment of Namal Lake, Mianwali, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study is concentrated on the radiological risk assessment of sixteen surface sediment samples recovered from Namal Lake, District Mianwali, Punjab, Pakistan. The activity of 137Cs, 40 K, 226Ra, 228Ra, and 232Th was carried out with the help of a high purity germanium detector (HPGe) in the sediment, varied in the ranges of > 0.02–3.73 ± 1.31, 98.32 ± 21.45–341.02 ± 58.67, 18.34 ± 2.16–34.23 ± 4.34, 1.62 ± .30–2.34 ± .52, and 0.14 ± 0.10–2.34 ± 0.59 Bq kg−1 with average values 0.74 ± 0.29, 237.26 ± 37.97, 25.06 ± 4.74, 1.97 ± 0.39, and 1.73 ± 0.33 Bq kg−1, respectively. The measured concentrations in the current study have been compared with other earlier studies in the world. The data was also used for determining the other useful parameters like radium equivalent activity, absorbed dose rate, annual effective dose rate, and external and internal hazards index to assess the radiological risk assessment for the environment around the study area. The ERICA Tool software was also applied for radiological risk assessment for lake fish due to the radioactivity present in the lake sediments. It was concluded from the results of ERICA tool that the risk quotient in this study is less than one indicating that no toxic effects of radioactivity for Namal Lake fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data analyzed in this study are included in the manuscript and can be used this data for citation or reference.

References

  • Abdel-Halim, A. A., & Saleh, I. H. (2016). Radiological characterization of beach sediments along the Alexandria-Rosetta coasts of Egypt. Journal of Taibah University for Science, 10, 212–220.

    Article  Google Scholar 

  • Afzal, I. (2018). Natural and anthropogenic radioactivity in sediments of Namal Lake and evaluation of radiological hazards, M. Phil thesis Gomal University, Pakistan.

  • Aitchison, J. (1986). The statistical analysis of compositional data (p. 416). Chapman and Hall.

    Book  Google Scholar 

  • Akhtar, N., Tufail, M., & Ashraf, M. (2005). Natural environmental radioactivity and estimation of radiation exposure from saline soils. International Journal of Environmental Science and Technology.

  • Akram, M., Qureshi, R. M., Ahmad, N., & Solaija, T. J. (2006). Gamma emitting radionuclides in the shallow marine sediments off the Sindh coast, Arabian Sea. Radiation Protection Dosimetry.

  • Akram, M., Qureshi, R. M., Ahmad, N., & Solaija, T. J. (2007). Determination of gamma-emitting radionuclides in the inter-tidal sediments off Balochistan (Pakistan) Coast, Arabian Sea. Radiation Protection Dosimetry.

  • Ali, M., Iqbal, S., Wasim, M., et al. (2013a). Soil radioactivity levels and radiological risk assessment in the highlands of Hunza, Pakistan Radiation Protection Dosimetry.

  • Ali, M., Wasim, M., Iqbal, S., et al. (2013b). Determination of the risk associated with the natural and anthropogenic radionuclides from the soil of Skardu in Central Karakoram. Radiation Protection Dosimetry.

  • Allison, L. E. (1965). Organic carbon. In: C. A. Black, D. D. Evans, J. L. White, L. E. Enisminger, & F. E. Clark (Eds.), Methods of soil analysis (pp. 1372–1378). American Society of Agronomy Wisconsin.

  • Arapis, G. D., & Karandinos, M. G. (2004). Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece. Journal of Environmental Radioactivity., 77(2), 133–142.

    Article  CAS  Google Scholar 

  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian buildings, materials, industrial wastes and by products. Health Physics, 48, 87–95.

    Article  CAS  Google Scholar 

  • Blott, S. J., & Pye, K. (2001). Gradistat: A grain size distribution and Statistics Package for the analysis of consolidated sediment. Earth Surface Processes and Landforms, 26(2), 1237–1248.

    Article  Google Scholar 

  • Botwe, B. O., Schirone, A., Delbono, I., Barsanti, M., Delfanti, R., Kelderman, P., Nyarko, E., & Lens, P. N. (2017). Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). Journal of Radiation Research and Applied Sciences, 10(1), 63–71.

    Article  CAS  Google Scholar 

  • Brown, J., Alfonso, B., Avila, R., Beresford, N. A., Copplestone, D., Pröhl, G., & Ulanovsky, A. (2008). The ERICA tool. Journal of Environmental Radioactivity, 99(9), 1371–1383.

    Article  CAS  Google Scholar 

  • Chaudhary, M. Z., Ahmad, N., Mashiatullah, A., Yaqoob, N., & Robab, U. (2021a). Metal contamination in Sunairi Point sediment core along Karachi Coast. Pakistan, Journal of Radio Analytical and Nuclear Chemistry, 328(2), 605–615.

    Article  CAS  Google Scholar 

  • Chaudhary, M. Z., Ahmad, N., Yaqoob, N., Robab, U., & Abid, J. (2021b). Assessment of metal contamination in Manora Picnic Point sediment core from Karachi coast Pakistan. Environmental Earth Sciences, 80(475), 1–11.

    Google Scholar 

  • Chaudhary, M. Z., Khan, K., Ahmad, N., Mashiatullah, A., Javed, T., Yaqoob, N., Robab, U., Khan, M. S., & Abid, J. (2021). Sediment accumulation rates in Karachi coastal area Pakistan using 210Pb dating method. Journal of Radio Analytical and Nuclear Chemistry, 327(1), 13–20.

    Article  CAS  Google Scholar 

  • Chowdhurry, M. I., Alam, M. N., & Hazari, S. K. S. (1999). Distribution of radionuclides in the rivers sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Applied Radiation Isotope, 51, 747–755.

    Article  Google Scholar 

  • Debertin, K., & Helmer, R. G. (1988). Gamma and X-ray spectrometry detectors. North Holland.

    Google Scholar 

  • Dragović, S., Janković, L., & Onjia, A. (2006). Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiation Protection Dosimetry.

  • Eisenbud, M., & Gesell, T. (1997). Environmental radioactivity. From natural, industrial and military sources. Academic Press, Cambridge.

  • El-Gamal, A., Nasr, S., & El-Taher, A. (2007). Study of spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiation Measurement, 42, 457–465.

    Article  CAS  Google Scholar 

  • Ergül, H. A., Belivermiş, M., Kılıç, Ö., Topcuoğlu, S., & Çotuk, Y. (2013). Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay Turkey. Journal of Environmental Radioactivity, 126, 125–132.

    Article  CAS  Google Scholar 

  • Eroglu, H., & Kabadayi, O. (2013). Natural radioactivity levels in lake sediment samples. Radiation Protection Dosimetry, 156, 331–335.

    Article  CAS  Google Scholar 

  • Fallah, M., Jahangiri, S., Janadeleh, H., & Kameli, M. A. (2019). Distribution and risk assessment of radionuclides in river sediments along the Arvand River, Iran. Microchemical Journal, 1–10, PII: S0026–265X(19)30029–3.

  • Fatima, I., Zaidi, J.H., Arif M et al (2008). Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan. Radiation Protection Dosimetry.

  • Hameed, S., Pillai, G. S., Satheeshkumar, G., & Mathiyarasu, R. (2014). Measurement of gamma radiation frocks used as building material in Tiruchirappalli district, Tamil Nadu, India. Journal of Radioanalytical Nuclear Chemistry, 300, 1081–1088.

    Article  CAS  Google Scholar 

  • Hamzah, Z., Saat, A., Riduan, S. D., & Amirudin, C. Y. (2012). Assessment of 137Cs activity concentration in soil from tea plantation areas in Cameron Highlands. Journal Nuclear and Related Technologies, 9(1), 1–5.

    Google Scholar 

  • Holgye, Z., & Maly, M. (2000). Vertical distribution and migration rates of 239Pu + 240Pu, 238Pu, and 137Cs in the grassland soil in three locations of Central Bohemia. Journal of Environmental Radioactivity, 47, 135–147.

    Article  CAS  Google Scholar 

  • ICRP. (2000). Limits for intakes of radionuclides by workers. International Commission on Radiological Protection Committee II. Pergamon Press New York. Pp277.

  • Isinkaye, M. O., & Farai, I. P. (2008). Activity concentrations of primordial radionuclides in sediments of surface water dams in southwest Nigeria-a baseline survey. Radioprotection, 43(4), 533–545.

    Article  CAS  Google Scholar 

  • Isinkaye, M. O., & Emelue, H. U. (2015). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake South East Nigeria. Journal of Radiation Research and Applied Sciences, 8, 459–469.

    Article  Google Scholar 

  • Jabbar, T., Khan, K., Subhani, M. S., et al. (2008). Environmental gamma radiation measurement in District Swat, Pakistan. Radiation Protection Dosimetry.

  • Jabbar.A., Khan, K., Jabbar, T., et al. (2016). Radioactive contents and background doses from northern alluvial sediment plains between rivers Ravi and Chenab, Pakistan. Journal of Nuclear Science and Technology.

  • Javed, T., Ahmad, N., & Mashiatullah, A. (2018). Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake Pakistan Polish. Journal of Environmenta Studies, 27(2), 675–688.

    CAS  Google Scholar 

  • Jibiri, N. N., & Okeyode, I. C. (2012). Evaluation of radiological hazards in the sediments of Ogun River, South-Western Nigeria. Radiation Physics and Chemistry, 81, 1829–1835.

    Article  CAS  Google Scholar 

  • Khan, M. S., Aadil, N., & Gillani, S. T. A. (2011). Effects of human activities on eco-system of Kallar Kahar, Namal and Khan Pur lakes in Pakistan, hydro-eco, hydrology and ecology: Ecosystems, groundwater and surface water - pressures and options, Abstract number 327. Austria.

    Google Scholar 

  • Khater, A. E. M., Ebaid, Y. Y., & El-mongy, S. A. (2005). Distribution pattern of natural radionuclides in lake Nasser bottom sediments. International Congress Series, 1276, 405–406.

    Article  CAS  Google Scholar 

  • Kobya, Y., Taskin, H., Yeslkanat, C. M., Varinlioglu, A., & Korcak, S. (2015). Natural and artificial radioactivity assessment of dam lakes sediments in Coruh River Turkey. Journal of Radio Analytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-014-3420-7

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediment and suspended particulate matter. Earth Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  • Lu, X., & Xiolan, Z. (2006). Measurement of natural radioactivity in sand samples collected from the Booje Weithe sand park China. Environmental Geology, 5, 977–988.

    Google Scholar 

  • Malta, M., Oliveira, J. M., Silva, L., & Carvalho, F. P. (2013). Radioactivity from Lisboa urban wastewater discharges in the Tejo River Estuary. Journal of Integrated Coastal Zone Management 13, 399–408.

    Google Scholar 

  • Manigandan, P. K., & Chandar Shekar, B. (2014). Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India. Journal of Environmental Radioactivity.

  • Mashiatullah, A., Chaudhary, M. Z., Ahmad, N., Ahmad, N., Javed, T., & Ghaffar, A. (2015). Geochemical assessment of metal pollution and ecotoxicology in sediment cores along Karachi coast Pakistan. Environmental Monitoring and Assessment, 187, 249.

    Article  CAS  Google Scholar 

  • Matiullah, A., Ahad, A., Ur Rehman, S., et al. (2004). Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiation Protection Dosimetry.

  • McKeague, J. A. (1978). Manual on soil sampling and methods of analysis 2nd Ed.

  • Nada, A., & Ibrahim, E. M. (2013). Relations between radionuclides activities before and after leaching processes of different rock types. Journal of Applied Sciences Research, 9(6), 3536–3542.

    CAS  Google Scholar 

  • Nada, A., Abd-El Maksoud, T. M., Abu-Zeid Hosnia, M., et al. (2009). Distribution of radionuclides in soil samples from a petrified wood forest in El-Qattamia, Cairo, Egypt. Applied Radiation and Isotope.

  • Narayana, Y., Rajashekara, K. M., & Siddappa, K. (2007). Natural radioactivity in some major rivers of coastal Karnataka on the southwest coast of India. Journal of Environmental Radioactivity, 95, 98–106.

    Article  CAS  Google Scholar 

  • Navas, A., Gaspar, L., López-Vicente, M., & MacHín, J. (2011). Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiation Measurement.

  • Ndontchueng, M. M., Simo, A., Nguelem, E. J. M., Beyala, J. F., & Kryeziu, D. (2013). Preliminary study of natural radioactivity and radiological risk assessment in some mineral bottled water produced in Cameroon. International Journal Science and Technology, 3(5), 271–276.

    Google Scholar 

  • NEA-OECD, (1979). Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group of Experts. OECD, Paris. Ahmed, M. M., Das, S. K., Haydar, M. A., Bhuiyan, M. M. H., Ali, M. I., and Paul, D. (2014). Study of natural radioactivity and radiological hazard of sand, sediment, and soil samples from Inani beach Cox’s Bazar, Bangladesh. Journal of Nuclear and Particle Physics., 4(2), 69–78.

    Google Scholar 

  • Ngachin, M., Garavaglia, M., Giovani, C., Kwato-Njock, M. G., & Nourredine, A. (2007). Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiation Measurement, 42, 61–67.

    Article  CAS  Google Scholar 

  • Pappa, et al. (2019). Dispersion pattern of 226Ra and 235U using the ERICA Tool in the coastal mining area, Ierissos Gulf Greece. Applied Radiation and Isotope, 145, 198–204.

    Article  CAS  Google Scholar 

  • Pillai, P. M. B. (2005). Naturally occurring radioactive materials (NORM) in the extraction and processing of rare earths. Indian Rare Earths Ltd, Mumbai, pp 1–17.

  • Price, K. R. (1991). The depth distribution of 90Sr, 137Cs and 239,240 Pu in soil profile samples. Radiochimica Acta, 54, 145–147.

  • Qureshi, A. A., Tariq, S. A., Ud Din, K., Manzoor, S., & Calligaris., & Waheed, A. (2014). Evaluation of excessive life time cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. Journal of Radiation Research and Applied Sciences, 7(4), 438–447.

    Article  Google Scholar 

  • Radiation, U. N. S. C. E. A. R. (2008). Report of the United Nations Scientific Committee on the effects of atomic radiation: Fifty-sixth session. United Nations Publications.

  • Rafique, M., Rehman, H., Matiullah, M., et al. (2011). Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir Pakistan. Iranian Journal Radiation Research, 9, 77.

    Google Scholar 

  • Sahin, L., Hafızoğlu, N., Çetinkaya, H., et al. (2017). Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isotopes in Environmental Health Studies.

  • Sahoo, S.K., Hosoda, M., Kamagata, S., et al. (2011). Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples. Progress in Nuclear Science and Technology.

  • Saleem, S., Mashiatullah, A., Asma, M., Yaqoob, N., & Khan, M. S. (2015). Radiological risk assessment to marine biota along Manora channel Karachi Coast-Pakistan. Iranian Journal of Energy and Environment, 6(3), 212–216.

    Google Scholar 

  • Sanchez, F & Rodriguez-Alvarez, M. J. (1999). Effect of pH, temperature, conductivity and sediment size of thorium and radium activities along Jucar River (Spain). Journal of Radio analytical and Nuclear Chemistry, 242(3), 671–68. https://link.springer.com/article/10.1007/BF02347378

  • Semkow, T., & M., Parekh, P. P., Schwenker, C. D., Khan, A. J, Bari, A., Colaresi, J. F., Tench, O. K., David, G., and Guryn, W. (2002). Low-background gamma spectrometry for environmental radioactivity. Applied Radiation and Isotope, 57, 213–223.

    Article  CAS  Google Scholar 

  • Shehzad, W., Satti, K. H., Khan, M., Khan, K., Naseem, A., Rehman, S., & Jabbar, A. (2019). Estimation of background radiation levels and associated health risks in mineral rich District Chiniot Pakistan. Journal of Radio Analytical and Nuclear Chemistry, 319(3), 1051–1058.

    Article  CAS  Google Scholar 

  • Sigurgeirsson, M. A., Arnalds, O., Palsson, S. E., Howard, B. J., & Gudnason, K. (2005). Adiocaesium fallout behavior in volcanic soils in Iceland. Journal of Environmental Radioactivity, 79, 39–53.

    Article  CAS  Google Scholar 

  • Singh, J., Singh, H., Singh, S., et al (2009). Comparative study of natural radioactivity levels in soil samples from the Upper Siwaliks and Punjab, India using gamma-ray spectrometry. Journal of Environmental Radioactivity.

  • Staunton, S., Dumat, C., & Zsolnay, A. (2002). Possible role of organic matter in radiocaesium desorption in soil. Journal of Environmental Radioactivity, 58, 163–173.

    Article  CAS  Google Scholar 

  • Tabar, E., Yakut, H., Saç, M. M., et al. (2017). Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. Journal of Radioanalytical and Nuclear Chemistry.

  • Tufail, M., Asghar, M., Akram, M., et al. (2013). Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. Journal of Radioanalytical and Nuclear Chemistry.

  • UNSCEAR. (1993). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.

  • UNSCEAR. (2000). Sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem.

  • UNSCEAR. (2008). Sources, effects and risks of ionizing radiation. Report to the general assembly scientific annexes A and B.

  • Vasile, M., & Benedik, L. (2008). On the determination of 228Ra, 210Po, 234U and 238U in mineral waters. JRS Scientific and Technical Reports EUR 23683 EN, ISBN 978–92–79–11126–6, European Commission Joint Research Centre Institute for Reference Materials and Measurement, Retieseweg 111, B-2440 Geel Belgium.

  • Vukašinović, I., Dordević, A., Rajković, M. B., et al. (2010). Distribution of natural radionuclides in anthrosol-type soil. Turkish Journal of Agriculture and Forestry.

  • Wo, Y. M., & Ahmad, Z. (2008). Validation of 226Ra and 40K measurement in environmental samples using gamma spectrometry system. The Malaysian Journal and Analytical Sciences, 12(1), 179–186.

    Google Scholar 

  • Xinwei, L., Xiaolan, Z., & Fengling, W. (2008). Natural radioactivity in sediment of Wei River, China. Environmental Geology, 53, 1483–1489.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1996). Bio statistical analysis (3rd ed.). Prentice-Hall.

    Google Scholar 

  • Zorer, Ö. S. (2019). Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. Microchemical Journal, 145, 762–766.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Head Isotope Application Division (IAD), for facilitating the use of equipment for the analysis of the sediment samples for this study. The expert opinion and guidance for sampling strategy provided by Dr. Tanveer Ahmad, DCS, IAD, are highly acknowledged by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zaman Chaudhary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, I., Chaudhary, M.Z., Khan, E.U. et al. Radiological risk assessment in sediment of Namal Lake, Mianwali, Pakistan. Environ Monit Assess 194, 223 (2022). https://doi.org/10.1007/s10661-022-09881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09881-1

Keywords

Navigation