Skip to main content
Log in

Biomonitoring of airborne trace elements using transplanted lichens around a paper industry (Morelia, Mexico)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The deposition of trace elements around a pulp and paper industry in Morelia, Mexico, was evaluated using two lichen species as biomonitors. Samples of the foliose lichen Flavopunctelia praesignis and the fruticose lichen Usnea ceratina were collected in two remote areas and transplanted at different distances and directions from the pollution source. Lichen samples were exposed for 4 months (1) around the industrial area and (2) in their native habitats (control sites). We investigated the bioaccumulation of 11 trace elements in lichen thalli, and we compared the response of the two lichen species. To identify possible common sources, we evaluated the relationships between trace elements by correlations and cluster analyses. Our results showed that Cd was a good tracer for air pollution from the pulp and paper mills. In samples of Usnea ceratina exposed around the industrial area, Cd was significantly higher than in the remote area. Within the study area, trace element contents increase with the distance from the source, and they showed high depositions in the direction of prevailing winds. Moreover, we were able to detect groups of elements with similar behavior and common origins. Our results indicated that Flavopunctelia praesignis showed a higher capacity to accumulate trace elements than Usnea ceratina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adamo, P., Giordano, S., Vingiani, S., Castaldo-Cobianchi, R., & Violantea, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122, 91–103. https://doi.org/10.1016/s0269-7491(02)00277-4

    Article  CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace Elements in Terrestrial Environments. Springer.

    Book  Google Scholar 

  • Agnan, Y., Séjalon-Delmas, N., Claustres, A., & Probst, A. (2015). Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of the Total Environment, 529, 285–296. https://doi.org/10.1016/j.scitotenv.2015.05.083

    Article  CAS  Google Scholar 

  • Alimonti, A., & Mattei, D. (2008). Biomarkers for human monitoring. In M. E. Conti (Ed.). Biological Monitoring: Theory and Applications. Bioindicators and Biomarkers for Environmental Quality and Human Exposure Assessment, 17, 111–162. WIT Press. https://doi.org/10.2495/978-1-84564-002-6/06

  • Azevedo, R. S., Fernández-Salegui, A. B., Terron-Alfonso, A., & Soares, A. M. V. M. (2012). Biomonitoring atmospheric pollution from pulp mill industry using lichen transplants in central-littoral Portugal. In R. S. Azevedo (Ed.), Lichen biodiversity and biomonitoring of atmospheric pollution (pp. 79–118). The University of Aveiro.

    Google Scholar 

  • Bačkor, M., & Loppi, S. (2009). Interactions of lichens with heavy metals. Biología Plantarum, 53(2), 214–222. https://doi.org/10.1007/s10535-009-0042-y

    Article  CAS  Google Scholar 

  • Bajpai, R., Upreti, D. K., Nayaka, S., & Kumari, B. (2010). Biodiversity, bioaccumulation, and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. Journal of Hazardous Materials, 174, 429–436. https://doi.org/10.1016/j.jhazmat.2009.09.071

    Article  CAS  Google Scholar 

  • Bargagli, R., & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In: P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with Lichens−Monitoring Lichens 7, 65−84. NATO Science Series.

  • Bargagli, R., & Nimis, P. L. (2002). Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with Lichens—Monitoring Lichens, 7, 295−299. NATO Science Series.

  • Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., & Gallorini, M. (2007). Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environmental Pollution, 148(2), 468–476. https://doi.org/10.1016/j.envpol.2006.12.003

    Article  CAS  Google Scholar 

  • Boonpragob, K., & Nash III, T. H. (1991). Physiological responses of the lichen Ramalina menziesii Tayl. to the Los Angeles urban environment. Environmental and Experimental Botany, 31(2), 229– 238. https://doi.org/10.1016/0098-8472(91)90075-Y

  • Borah, P., Singh, P., Rangan, l., Karak, T., & Mitra, S. (2018). Mobility, bioavailability and ecological risk assessment of cadmium and chromium in soils contaminated by paper mill wastes. Groundwater for Sustainable Development, 6, 189–199. https://doi.org/10.1016/j.gsd.2018.01.002

    Article  Google Scholar 

  • Bosserman, R. W., & Hagner, J. E. (1981). Elemental composition of epiphytic lichens from Okefenokee Swamp. The Bryologist, 84(1), 48–58. https://doi.org/10.2307/3242977

    Article  CAS  Google Scholar 

  • Bozkurt, Z. (2017). Determination of airborne trace elements in an urban area using lichens as biomonitor. Environmental Monitoring and Assessment, 189, 573. https://doi.org/10.1007/s10661-017-6275-x

    Article  CAS  Google Scholar 

  • Brown, D. H. (1976). Mineral uptake by lichens. In D. H. Brown, D. L. Hawksworth, & R. H. Bailey (Eds.), Lichenology: Progress and problems (pp. 419–439). Academic Press.

    Google Scholar 

  • Brunialti, G., & Frati, L. (2007). Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: A retrospective study over a 7-year time span. Science of the Total Environment, 387, 289–300. https://doi.org/10.1016/j.scitotenv.2007.06.033

    Article  CAS  Google Scholar 

  • Cervantes, L., Ávila, O., Ruvalcaba, J. L., Miranda, J., & Muñoz, R. (2008). The use of biomonitors and PIXE analysis in the study of air pollution in Mexico City. X-Ray Spectrometry, 37, 156–162. https://doi.org/10.1002/xrs.1056

    Article  CAS  Google Scholar 

  • Chandra, R., Yadav, S., & Yadav, S. (2017). Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecological Engineering, 98, 134–145. https://doi.org/10.1016/j.ecoleng.2016.10.017

    Article  Google Scholar 

  • Cheremisinoff, N. P., & Rosenfeld, P. E. (2010). Handbook of pollution prevention and cleaner production best practices in the wood and paper industries. Elsevier Science and Technology.

  • Conti, M. E. (2008). Lichens as bioindicators of air pollution. In M. E. Conti (Ed.), Biological Monitoring: Theory and applications. Bioindicators and Biomarkers for Environmental Quality and Human Exposure Assessment 17, 111−162. WIT Press.

  • Díaz, R. L. S. (2013). Evaluación de la calidad del agua y sedimentos del rio grande de Morelia. Universidad Michoacana de San Nicolás de Hidalgo.

    Google Scholar 

  • Delgado, C., Israde, I., Bautista, F., Gogichaishvili, A., Márquez, C., Cejudo, R., Morales, J., & González, I. (2015). Metales pesados en suelos urbanos de Morelia, Michoacán: Influencia del uso del suelo y del tipo de vialidad. Ciencia Nicolaita, 65, 120–138.

    Google Scholar 

  • Delgado, C., Israde, I., Bautista, F., Gogichaishvili, A., Márquez, C., Cejudo, R., Morales, J., & González, I. (2018). Distribución espacial de Fe Li, Pb, Mn, V, Y Zn en suelos urbanos de Morelia, Michoacán, México. Revista Internacional de Contaminación Ambiental, 34, 427−440. https://doi.org/10.20937/RICA.2018.34.03.06

  • Di Lella, L. A., Frati, L., Loppi, S., Protano, G., & Riccobono. (2003). Lichens as biomonitors of uranium and other trace elements in an area of Kosovo heavily shelled with depleted uranium rounds. Atmospheric Environment, 37(38), 5445–5449. https://doi.org/10.1016/j.atmosenv.2003.09.009

    Article  CAS  Google Scholar 

  • Doğrul-Demiray, A., Yolcubal, I., Hakan-Akyol, N., & Çobanoğlu, G. (2012). Biomonitoring of airborne metals using the Lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological indicators, 18, 632−643. https://doi.org/10.1016/j.ecolind.2012.01.024

  • Environmental Protection Agency, EPA. (2002). Profile of the pulp and paper industry. Second edition. EPA Office of Compliance. EPA Sector Notebook Project. EPA/310-R-02–002.

  • Frati, L., Brunialti, G., & Loppi, S. (2005). Problems related to lichen transplants to monitor trace element deposition in repeated surveys: A case study from Central Italy. Journal of Atmospheric Chemistry, 52, 221–230. https://doi.org/10.1007/s10874-005-3483-5

    Article  CAS  Google Scholar 

  • Gasparo, D., Castello, M., & Bargagli, R. (1989). Biomonitoraggio del’ inquinamento atmosferico tramite lichenl: Studio Presso un inceneritore (Macerata). Studia Geobotanica, 9, 152–250.

    Google Scholar 

  • Gerdol, R., Marchesini, R., Iacumin, P., & Brancaleoni, L. (2014). Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere, 108, 388–395. https://doi.org/10.1016/j.chemosphere.2014.02.035

    Article  CAS  Google Scholar 

  • Giordani, P., Benesperi, R., Bianchi, E., Brunialti, G., Cecconi, E., Contardo, T., Di Nuzzo, L., Fortuna, L., Frati, L., Loppi, S., Monaci, F., Nascimbene, J., Paoli, L., Ravera, S., Tretiach, M., & Vannini, A. (2020). Guidelines for the use of lichens as bioaccumulators. Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma.

  • Giordano, S., Adamo, P., Spagnuolo, V., Tretiach, M., & Bargagli, R. (2013). Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: Towards a harmonisation of the moss-bag technique. Chemosphere, 90, 292–299. https://doi.org/10.1016/j.chemosphere.2012.07.006

    Article  CAS  Google Scholar 

  • Glenn, M. G., Gomez-Bolea, A., & Lobello, R. (1995). Metal content and community structure of cryptogam bioindicators in relation to vehicular traffic in Montseny Biosphere Reserve (Catalonia, Spain). The Lichenologist, 27(4), 291–304. https://doi.org/10.1006/lich.1995.0026

    Article  Google Scholar 

  • Godinho, R. M., Freitas, M. C., & Wolterbeek, HTh. (2004). Assessment of lichen vitality during a transplantation experiment to a polluted site. Journal of Atmospheric Chemistry, 49(1), 355–361. https://doi.org/10.1007/s10874-004-1251-6

    Article  CAS  Google Scholar 

  • Godinho, R. M., Verbug, T. G., Freitas, M. C., & Wolterbeek, H. Th. (2009). Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environmental Pollution, 157, 102−109. https://doi.org/10.1016/j.envpol.2008.07.021

  • Gómez-Peralta, M., & Chávez-Carmona, A. (1995). Líquenes indicadores biológicos en el campo geotérmico Los Azufres, Michoacán, México. Geotermia Revista Mexicana De Geoenergía, 3, 137–143.

    Google Scholar 

  • Graney, J. R., Landis, M. S., Puckett, K. J., Studabaker, W. B., Edgerton, E. S., Legge, A. H., & Percy, K. E. (2017). Differential accumulation of PAHs, elements, and Pb isotopes by five lichen species from the Athabasca Oil Sands Region in Alberta, Canada. Chemosphere, 184, 700–710. https://doi.org/10.1016/j.chemosphere.2017.06.036

    Article  CAS  Google Scholar 

  • Gregorio-Cipriano, M. A., Gómez-Peralta, M., & Álvarez, I. (2016). Líquenes cortícolas de las áreas urbanas y suburbanas de Morelia, Michoacán, México. Botanica Complutensis, 40, 9–21. https://doi.org/10.5209/BCOM.53195

    Article  Google Scholar 

  • Halonen, P., Hyvärinen, M., & Kauppi, M. (1993). Emission related and repeated monitoring of element concentrations in the epiphytic lichen Hypogymnia physodes in a coastal area. W Finland. Annales Botanici Fennici, 30(4), 251–261.

    CAS  Google Scholar 

  • Hawksworth, D. L., Iturriaga, T., & Crespo, A. (2005). Líquenes como bioindicadores inmediatos de contaminación y cambios medioambientales en los trópicos. Revista Iberoamericana De Micología, 22(2), 71–82. https://doi.org/10.1016/S1130-1406(05)70013-9

    Article  Google Scholar 

  • Herrera-Campos, M. A., Lücking, R., Pérez-Pérez, R. E., Miranda-González, R., Sánchez, N., Bárcenas-Pena, A., Carrizosa, A., Zambrano, A., Ryan, B. D., & Nash, T. H., III. (2014). Biodiversidad de líquenes en México. Revista Mexicana De Biodiversidad, 85, 82–99. https://doi.org/10.7550/rmb.37003

    Article  Google Scholar 

  • Knops, J. M. H., Nash, T. H., III., Boucher, V. L., & Schlesinger, W. L. (1991). Mineral cycling and epiphytic lichens: Implications at the ecosystem level. The Lichenologist, 23(3), 309–321. https://doi.org/10.1017/S0024282991000452

    Article  Google Scholar 

  • Kularatne, K. I. A., & De Freitas, C. R. (2013). Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environmental and Experimental Botany, 88, 24–32. https://doi.org/10.1016/j.envexpbot.2012.02.010

    Article  CAS  Google Scholar 

  • Kytömaa, A., Nieminen, S., Thuneberg, P., Haapala, H., & Nuorteva, P. (1995). Accumulation of aluminum in Hypogymnia physodes in the surroundings of a Finnish sulphite-cellulose factory. Water, Air, and Soil Pollution, 81, 401–409. https://doi.org/10.1007/BF01104024

    Article  Google Scholar 

  • Loppi, S., & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121(3), 327–332. https://doi.org/10.1016/s0269-7491(02)00269-5

    Article  CAS  Google Scholar 

  • Loppi, S. & Paoli, L. (2015). Comparison of the trace element content in transplants of the lichen Evernia prunastri and in bulk atmospheric deposition: A case study from a low polluted environment (C Italy). Biologia, 70(4), 460−466. https://doi.org/10.1515/biolog-2015-0053

  • Minganti, V., Capelli, R., Drava, G., De Pellegrini, R., Brunialti, G., Giordani, P., & Modenesi, P. (2003). Biomonitoring of trace metals by different species of lichens (parmelia) in north-west Italy. Journal of Atmospheric Chemistry, 45, 219–229. https://doi.org/10.1023/A:1024215023633

    Article  CAS  Google Scholar 

  • Mikhailova, I. (2002). Transplanted lichens for bioaccumulation studies. In P. L. Nimis, C. Scheidegger, P. A. Wolseley (Eds.). Monitoring with Lichens—Monitoring Lichens 7, 301−304. NATO Science Series.

  • Nash, T. H., III. (2008). Lichen biology. Cambridge University Press.

    Book  Google Scholar 

  • Nimis, P. L., Andreussi, S., & Pittao, E. (2001). The performance of two lichen species as bioaccumulators of trace metals. Science of the Total Environment, 275, 43–51. https://doi.org/10.1016/S0048-9697(00)00852-4

    Article  CAS  Google Scholar 

  • Nordberg, G. F., Fowler, B. A., & Nordberg, M. (2015). Handbook on the toxicology of metals. Elsevier.

    Google Scholar 

  • Nurmesniemi, H., Pöykiö, R., Kuokkanen, T., & Rämö, J. (2008). Chemical sequential extraction of heavy metals and sulphur in bottom ash and in fly ash from a pulp and paper mill complex. Waste Management & Research, 26(4), 389–399. https://doi.org/10.1177/0734242X07079051

    Article  CAS  Google Scholar 

  • Organismo Operador de Agua Potable, Alcantarillado y Saneamiento de Morelia, OOAPAS. (2018). Datos estaciones meteorológicas de Morelia: Mintzita período 2006−2018.

  • Paoli, L., Guttová, A., Grassi, A., Lackovičová, A., Senko, D., & Loppi, S. (2014). Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecological Indicators, 40, 127–135. https://doi.org/10.1016/j.ecolind.2014.01.011

    Article  CAS  Google Scholar 

  • Paoli, L., Munzi, S., Guttová, A., Senko, D., Sardella, G., & Loppi, S. (2015). Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecological Indicators, 52, 362–370. https://doi.org/10.1016/j.ecolind.2014.12.018

    Article  CAS  Google Scholar 

  • Paoli, L., Vannini, A., Fačkovcová, Z., Guarnieri, M., Bačkor, M., & Loppi, S. (2018). One year of transplant: Is it enough for lichens to reflect the new atmospheric conditions? Ecological Indicators, 88, 495–502. https://doi.org/10.1016/j.ecolind.2018.01.043

    Article  CAS  Google Scholar 

  • Pöykiö, R., Nurmesniemi, H., Perämäki, P., Kuokkanen, T., & Välimäki, I. (2005). Leachability of metals in fly ash from a pulp and paper mill complex and environmental risk characterisation for eco-efficient utilization of the fly ash as a fertilizer. Chemical Speciation and Bioavailability, 17(1), 1–9. https://doi.org/10.3184/095422905782774964

    Article  Google Scholar 

  • Puy-Alquiza, M. J., Miranda-Aviles, J. Zanor, G. A., Salazar-Hernández, Ma. M., & Ordaz-Zubia, V. Y. (2017). Estudio de la distribución de metales pesados en la atmosfera de la ciudad de Guanajuato: uso de especies de líquenes saxícolas como bioindicadores. Ingeniería, investigación y tecnología, 18(1), 111−126. https://doi.org/10.22201/fi.25940732e.2017.18n1.010

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Rangel-Osornio, V., Fernández-Salegui, A. B., Gómez-Reyes, V. M., Alfaro Cuevas-Villanueva, R., & Lopez-Toledo, L. (2021). Effects of air pollution on chlorophyll content and morphology of lichens transplanted around a paper industry (Morelia, Mexico). The Bryologist, 124(1), 52–67. https://doi.org/10.1639/0007-2745-124.1.052

    Article  Google Scholar 

  • Servicio meteorológico Nacional CONAGUA. (2011). Temperatura media anual y precipitación anual (1902–2011). Atlas climático Digital de México.

  • Secretaria de Urbanismo y Medio Ambiente del Gobierno del Estado de Michoacán, SUMA. (2015). Programa de gestión para mejorar la calidad del aire en el estado de Michoacán 2015−2024. SEMARNAT, México.

  • Singh, A. K., & Chandra, R. (2019). Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquatic Toxicology, 211, 202–216. https://doi.org/10.1016/j.aquatox.2019.04.007

    Article  CAS  Google Scholar 

  • Singh, A. K., & Prasad, S. M. (2014). Remediation of heavy metal contaminated ecosystem: An overview on technology advancement. International Journal of Environmental Science and Technology, 12, 353–366. https://doi.org/10.1007/s13762-014-0542-y

    Article  CAS  Google Scholar 

  • Sujetovienė, G., & Galinytė, V. (2016). Effects of the urban environmental conditions on the physiology of lichen and moss. Atmospheric Pollution Research, 7(4), 611–618. https://doi.org/10.1016/j.apr.2016.02.009

    Article  Google Scholar 

  • Surh, M., Klein, G., Kourti, I., Gonzalo, M. R., Santoja, G. G., Roudier, S., & Sancho, L. D. (2015). Best available techniques (BAT) reference document for the production of pulp, paper and board: Industrial emissions directive 2010/75/EU integrated pollution prevention and control. Publications Office of the European Union.

    Google Scholar 

  • Wolterbeek, H. T., Garty, J., Reis, M. A., & Freitas, M. C. (2003). Biomonitors in use: Lichens and metal air pollution. In B. A. Markert, A. M. Breure, & H. G. Zechmeister (Eds.), Bioindicators and biomonitors (pp. 377–419). Elservier Science.

    Google Scholar 

  • Yadav, S., & Chandra, R. (2018). Detection and assessment of the phytotoxicity of residual organic pollutants in sediment contaminated with pulp and paper mill effluent. Environmental, Monitoring and Assessment, 190(10), 581. https://doi.org/10.1007/s10661-018-6947-1

    Article  CAS  Google Scholar 

  • Zaccaron, S., Henniges, U., Potthast, A., & Rosenaua, T. (2020). How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses. Cuoxam and Cadoxen. Carbohydrate Polymers, 240, 116251. https://doi.org/10.1016/j.carbpol.2020.116251

    Article  CAS  Google Scholar 

  • Zambrano, G. A., & Nash, T. H., III. (2000). Lichens responses to short-term transplantation in Desierto de los Leones, Mexico City. Environmental Pollution, 107, 407–412. https://doi.org/10.1016/S0269-7491(99)00169-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express special thanks to the Laboratorio de Macromicetes y Líquenes and the Voluntary Conservation Area “El Tocuz” for their help in field and laboratory work. Ruth Alfaro Cuevas Villanueva, Ofelia Morton Bermea, Elizabeth Hernández Álvarez, and the ICP-MS laboratory of the Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM) thanked for their financial support and their assistance during the chemical analysis. We are grateful to anonymous revisors for the useful comments. Thanks to the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship assigned to the first author.

Funding

This research was funded by the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT) through MSc. grant (CVU: 858383) for the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Rangel-Osornio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-Osornio, V., Gómez-Reyes, V.M., Cuevas-Villanueva, R.A. et al. Biomonitoring of airborne trace elements using transplanted lichens around a paper industry (Morelia, Mexico). Environ Monit Assess 194, 244 (2022). https://doi.org/10.1007/s10661-022-09873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09873-1

Keywords

Navigation