Skip to main content
Log in

Portable smartphone-based colorimetric system for simultaneous on-site microfluidic paper-based determination and mapping of phosphate, nitrite and silicate in coastal waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Early and on-site detection of environmental contaminations and physicochemical parameters of seawater is increasingly preferred to guarantee hazard minimization in many settings. In this paper, we describe a combination of microfluidic paper-based sensors (µPADs) and an Android-based smartphone application (App) for simultaneous on-site quantification of phosphate (PO4-P), silicate (SiO3-Si) and nitrite (NO2-N) in coastal seawater samples. The developed App can on-site capture, process, and quantify the µPAD colorimetric outputs. This App uses an image processing algorithm for quantifying color intensity and relating the RGB components to the analyte concentrations. The GPS-tagged data can be stored on the smartphone or sent via social networks. The significant factors affecting the detection of the analytes were optimized using Box–Behnken design. Under optimized parameters, the proposed method presented the linear ranges between 5 and 100 µg L−1 for phosphate (R2 = 0.9909), 5 to 100 µg L−1 (R2 = 0.9819) for nitrite and 10 to 600 µg L−1 (R2 = 0.9933) for silicate. The LODs of the method for detection of phosphate, nitrite and silicate were 1.52 µg L−1, 0.61 µg L−1 and 3.74 µg L−1, respectively. The device was successfully used to simultaneous analyze and map the PO4-P, SiO3-Si and NO2-N of Bushehr coastal seawater samples (Iran). The results were confirmed by the lab-based conventional colorimetric methods using spectrophotometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmadi, S. H., & Manbohi, A. (2014). Different morphologies of polypyrrole produced by flow-through and batch electropolymerizations: Application in electrochemically controlled in-tube solid phase microextraction. RSC Advances, 4, 64393–64401. https://doi.org/10.1039/C4RA13669A

    Article  CAS  Google Scholar 

  • Bagshaw, E. A., Beaton, A., Wadham, J. L., Mowlem, M., Hawkings, J. R., & Tranter, M. (2016). Chemical sensors for in situ data collection in the cryosphere. TrAC Trends in Analytical Chemistry, 82, 348–357. https://doi.org/10.1016/j.trac.2016.06.016

    Article  CAS  Google Scholar 

  • Bala, R., & Braun, K. (2003). Color-to-grayscale conversion to maintain discriminability (Vol. 5293): SPIE.

  • Bhakta, S. A., Borba, R., Taba, M., Garcia, C. D., & Carrilho, E. (2014). Determination of nitrite in saliva using microfluidic paper-based analytical devices. Analytica Chimica Acta, 809, 117–122. https://doi.org/10.1016/j.aca.2013.11.044

    Article  CAS  Google Scholar 

  • Cardoso, T. M. G., Garcia, P. T., & Coltro, W. K. T. (2015). Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods, 7(17), 7311–7317. https://doi.org/10.1039/C5AY00466G

    Article  CAS  Google Scholar 

  • Caspers, H. (1985). K. Grasshoff, M. Ehrhardt, K. Kremling (Editors): Methods of Seawater Analysis. Second, Revised and Extended Edition.–With 108 figs, 26 tab., 419 pp. Weinheim/Deerfield Beach, Florida: Verlag Chemie 1983. ISBN 3–527–2599–8 (Weinheim) 0–89573–7 (Deerfield Beach). DM 140,00, $ 70.00. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 70(2), 302–303.https://doi.org/10.1002/iroh.19850700232

  • Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry, 87(1), 19–41. https://doi.org/10.1021/ac503968p

    Article  CAS  Google Scholar 

  • de Tarso Garcia, P., Garcia Cardoso, T. M., Garcia, C. D., Carrilho, E., & Tomazelli Coltro, W. K. (2014). A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 4(71), 37637–37644. https://doi.org/10.1039/C4RA07112C

    Article  CAS  Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading Dead Zones and Consequences for Marine Ecosystems. Science, 321(5891), 926–929. https://doi.org/10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Duffy, G. (2017). Development and optimisation of colourimetric microfluidic sensors for water quality monitoring. (Doctor of Philosophy), Dublin City University, Dublin. Retrieved from https://core.ac.uk/download/pdf/154367698.pdf

  • Fang, T., Li, H., Bo, G., Lin, K., Yuan, D., & Ma, J. (2021). On-site detection of nitrate plus nitrite in natural water samples using smartphone-based detection. Microchemical Journal, 165, 106117. https://doi.org/10.1016/j.microc.2021.106117

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  • Ge, L., Wang, S., Song, X., Ge, S., & Yu, J. (2012). 3D Origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab on a Chip, 12(17), 3150–3158. https://doi.org/10.1039/C2LC40325K

    Article  CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Determination of nutrients. In Methods of Seawater Analysis (pp. 159–228).

  • Jayawardane, B. M., McKelvie, I. D., & Kolev, S. D. (2012). A paper-based device for measurement of reactive phosphate in water. Talanta, 100, 454–460. https://doi.org/10.1016/j.talanta.2012.08.021

    Article  CAS  Google Scholar 

  • Jayawardane, B. M., Wei, S., McKelvie, I. D., & Kolev, S. D. (2014). Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate. Analytical Chemistry, 86(15), 7274–7279. https://doi.org/10.1021/ac5013249

    Article  CAS  Google Scholar 

  • Jiang, Y., Hao, Z., He, Q., & Chen, H. (2016). A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator. RSC Advances, 6(4), 2888–2894. https://doi.org/10.1039/C5RA23470K

    Article  CAS  Google Scholar 

  • Karmoker, J. R., Hasan, I., Ahmed, N., Saifuddin, M., & Reza, M. S. (2019). Development and Optimization of Acyclovir Loaded Mucoadhesive Microspheres by Box -Behnken Design. Journal of Pharmaceutical Sciences, 18, 1–12.

    CAS  Google Scholar 

  • Klaus Grasshoff, K. K., Manfred Ehrhardt (1999). Methods of seawater analysis. (3rd ed ed.).

  • Manbohi, A., & Ahmadi, S. H. (2019). Sensitive and selective detection of dopamine using electrochemical microfluidic paper-based analytical nanosensor. Sensing and Bio-Sensing Research, 23, 100270. https://doi.org/10.1016/j.sbsr.2019.100270

    Article  Google Scholar 

  • Manbohi, A., & Ahmadi, S. H. (2020). Chitosan–Fe3O4 nanoparticle enzymatic electrodes on paper as an efficient assay for glucose and uric acid detection in biological fluids. Chemical Papers, 74(8), 2675–2687. https://doi.org/10.1007/s11696-020-01105-5

    Article  CAS  Google Scholar 

  • Manbohi, A., & Gholamipour, S. (2020). Utilizing chemometrics and geographical information systems to evaluate spatial and temporal variations of coastal water quality. Regional Studies in Marine Science, 34, 101077. https://doi.org/10.1016/j.rsma.2020.101077

    Article  Google Scholar 

  • Martinez, A. W., Phillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 82(1), 3–10. https://doi.org/10.1021/ac9013989

    Article  CAS  Google Scholar 

  • Ozeh, S., Nnanna, A. G. A., & Ndukaife, J. C. (November 9–15, 2018). Smartphone-Based Device for Monitoring Chemical Pollutants in Water. Paper presented at the Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA.

  • ROPME. (2010). Manual of oceanographic observations and pollutant analyses methods (Fourth Edition ed.): Kuwait : Regional Organization for the Protection of the Marine Environment.

  • Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4322–4333. https://doi.org/10.1098/rspb.2012.1032

    Article  CAS  Google Scholar 

  • Sicard, C., Glen, C., Aubie, B., Wallace, D., Jahanshahi-Anbuhi, S., Pennings, K., & Filipe, C. D. M. (2015). Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 70, 360–369. https://doi.org/10.1016/j.watres.2014.12.005

    Article  CAS  Google Scholar 

  • Srivastava, S., Vaddadi, S., & Sadistap, S. (2018). Smartphone-based System for water quality analysis. Applied Water Science, 8(5), 130. https://doi.org/10.1007/s13201-018-0780-0

    Article  CAS  Google Scholar 

  • Vidal, E., Lorenzetti, A. S., Lista, A. G., & Domini, C. E. (2018). Micropaper-based analytical device (μPAD) for the simultaneous determination of nitrite and fluoride using a smartphone. Microchemical Journal, 143, 467–473. https://doi.org/10.1016/j.microc.2018.08.042

    Article  CAS  Google Scholar 

  • Wang, B., Lin, Z., & Wang, M. (2015). Fabrication of a Paper-Based Microfluidic Device To Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay. Journal of Chemical Education, 92(4), 733–736. https://doi.org/10.1021/ed500644m

    Article  CAS  Google Scholar 

  • Wei, Q., Nagi, R., Sadeghi, K., Feng, S., Yan, E., Ki, S. J., & Ozcan, A. (2014). Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone. ACS Nano, 8(2), 1121–1129. https://doi.org/10.1021/nn406571t

    Article  CAS  Google Scholar 

  • Xing, Y., Zhu, Q., Zhou, X., & Qi, P. (2020). A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators B: Chemical, 319, 128254. https://doi.org/10.1016/j.snb.2020.128254

    Article  CAS  Google Scholar 

  • Xu, K., Chen, Q., Zhao, Y., Ge, C., Lin, S., & Liao, J. (2020). Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sensors and Actuators B: Chemical, 319, 128221. https://doi.org/10.1016/j.snb.2020.128221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Iran National Science Foundation (Grant no. 54372049) for supporting this project. We also would like to thank Iranian National Institute for Oceanography and Atmospheric Science (INIOAS) and Chemistry and Chemical Engineering Research Center of Iran (CCERCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Manbohi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manbohi, A., Ahmadi, S.H. Portable smartphone-based colorimetric system for simultaneous on-site microfluidic paper-based determination and mapping of phosphate, nitrite and silicate in coastal waters. Environ Monit Assess 194, 190 (2022). https://doi.org/10.1007/s10661-022-09860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09860-6

Keywords

Navigation