Skip to main content

Advertisement

Log in

Application of Soil and Water Assessment Tool (SWAT) to evaluate the fates of nitrogenous fertilizer in subtropical mountainous watershed tea farms

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Extensive nutrient loss is one of the most challenging issues faced by agricultural production regions worldwide. However, diffuse pollution in the subtropical mountainous watersheds is rarely simulated. A watershed model with regional parameter values is essential for watershed management. In this study, SWAT, one of the most popular models was applied to simulate daily discharge (years of 2008–2014), NO3-N flux (2012–2014), and tea yield (2012–2014) in the Ping-Lin watershed (PLW) of Taiwan, as well as to test the effectiveness of a modified fertilization strategy. The results demonstrated that SWAT was capable of simulating daily discharge variation, daily riverine NO3-N flux, and tea yield in the PLW. NO3-N yield of the tea farm (47 kg/ha/yr) was 9 times higher than that of the forest (5.1 kg/ha/yr). A significant proportion (~ 50%) of the input nitrogen (including dry/wet deposition and fertilizer) infiltrated into the soil, resulting in a poor fertilizer uptake efficiency of the tea tree. It was demonstrated that the modified fertilization strategy (apply fertilizer in small rainfall event, i.e., daily rainfall < 20 mm/day, and not in a single day) could increase the nitrogen uptake and harvest yield of the tea tree by 14% and 4%, respectively, with a 10% reduction in nitrogen input. Furthermore, this strategy significantly reduced the nitrogen yields from surface flow (75%), lateral flow (36%), percolation (50%), and groundwater (48%). A popular model with verified parameter values could help in developing a win–win strategy for both farmers and regulators, thus realizing the goals of sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets in this study are available from the corresponding author on reasonable request.

References

  • Abbaspour, K. C. (2007). User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, 93.

  • Abbaspour, K. C. (2008). SWAT-CUP2: SWAT calibration and uncertainty programs - a user manual. Department of systems analysis, integrated assessment and modelling (SIAM). Duebendorf: Eawag, Swiss Federal Institute of Aquatic Science and Technology.

  • Abbaspour, K. C. (2013). SWAT-CUP 2012: SWAT calibration and uncertainty programs-A user manual. Eawag: Dübendorf, Switzerland, 103.

  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752.

    Article  Google Scholar 

  • Arnold, J. G., Allen, P. M., Muttiah, R., & Bernhardt, G. (1995). Automated base flow separation and recession analysis techniques. Groundwater, 33(6), 1010–1018.

    Article  CAS  Google Scholar 

  • Arnold, J. G., & Fohrer, N. (2005). SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes: An International Journal, 19(3), 563–572.

    Article  Google Scholar 

  • Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012a). Soil and water assessment tool input/output documentation version 2012a. Texas Water Resources Institute, 7.

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., van Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, A., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

    Article  Google Scholar 

  • Arnold, J. G., Youssef, M. A., Yen, H., White, M. J., Sheshukov, A. Y., Sadeghi, A. M., Moriasi, D. N., Steiner, J. L., Amatya, D. M., Skaggs, R. W., Haney, E. B., Jeong, J., Arabi, M., & Gowda, P. H. (2015). Hydrological processes and model representation: Impact of soft data on calibration. Transactions of the ASABE, 58(6), 1637–1660.

    Article  CAS  Google Scholar 

  • Akhavan, S., Abedi-Koupai, J., Mousavi, S. F., Afyuni, M., Eslamian, S. S., & Abbaspour, K. C. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed. Iran. Agriculture, Ecosystems & Environment, 139(4), 675–688.

    Article  CAS  Google Scholar 

  • Bao, H., Lee, T. Y., Huang, J. C., Feng, X., Dai, M., & Kao, S. J. (2015). Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon. Scientific Reports, 5(1), 1–10.

    Article  Google Scholar 

  • Bouwman, A. F., Van Drecht, G., Knoop, J. M., Beusen, A. H. W., & Meinardi, C. R. (2005). Exploring changes in river nitrogen export to the world's oceans. Global Biogeochemical Cycles, 19(1).

  • Bressiani, d. A., D., Gassman, P. W., Fernandes, J. G., Garbossa, L. H. P., Srinivasan, R., Bonumá, N. B., & Mendiondo, E. M. (2015). Review of soil and water assessment tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biological Engineering, 8(3), 9–35.

    Google Scholar 

  • Chaubey, I., Chiang, L., Gitau, M. W., & Mohamed, S. (2010). Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. Journal of Soil and Water Conservation, 65(6), 424–437.

    Article  Google Scholar 

  • Chen, C., Guo, H., Chu, C., Lin, C., & Huang, W. (2008). Nitrogen and Phosphorus Contamination of Groundwater in Some Agricultural Area of Taiwan. Paper presented at the Proceedings of Conference on Non-point Pollution from Agriculture.

  • Chen, C. F., & Lin, J. Y. (2016). Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustainable Environment Research, 26(3), 124–130.

    Article  CAS  Google Scholar 

  • Chen, Y., Shuai, J., Zhang, Z., Shi, P., & Tao, F. (2014). Simulating the impact of watershed management for surface water quality protection: A case study on reducing inorganic nitrogen load at a watershed scale. Ecological Engineering, 62, 61–70.

    Article  Google Scholar 

  • Chiang, L. C., Liao, C. J., Lu, C. M., & Wang, Y. C. (2021). Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment, 193(8), 1–23.

    Article  CAS  Google Scholar 

  • Conley, D. J., Paer, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.

  • Cooper, D. M., & Watts, C. D. (2002). A comparison of river load estimation techniques: Application to dissolved organic carbon. Environmetrics, 13(7), 733–750.

    Article  CAS  Google Scholar 

  • Environmental Protection Administration. (2005). Pollution Sources Investigation and Water Quality Management Planning for Cingtan Watershed, EPA-95-G107–02–203, Environmental Protection Administration, Executive Yuan, Taipei, Taiwan.

  • Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment, 31(2), 64–71.

  • Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.

    Article  CAS  Google Scholar 

  • Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT model special section: Overview and insights. Journal of Environmental Quality, 43(1), 1–8.

    Article  CAS  Google Scholar 

  • Gramlich, A., Stoll, S., Stamm, C., Walter, T., & Prasuhn, V. (2018). Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields–A review. Agriculture, Ecosystems & Environment, 266, 84–99.

    Article  CAS  Google Scholar 

  • Guse, B., Reusser, D. E., & Fohrer, N. (2014). How to improve the representation of hydrological processes in SWAT for a lowland catchment–temporal analysis of parameter sensitivity and model performance. Hydrological Processes, 28(4), 2651–2670.

    Article  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries E., Lewitus, A., Magnien R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. (2008). Eutrophication and harmful algal blooms: a scientific consensus. Harmful algae, 8(1), 3–13.

  • Huang, J. C., Lee, T. Y., Kao, S. J., Hsu, S. C., Lin, H. J., & Peng, T. R. (2012). Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds. Hydrology and Earth System Sciences, 16(3), 699–714.

    Article  CAS  Google Scholar 

  • Huang, J. C., Lee, T. Y., Lin, T. C., Hein, T., Lee, L. C., Shih, Y. T., Kao, S. J., Shiah, F. K., & Lin, N. H. (2016). Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island. Taiwan. Biogeosciences, 13(6), 1787–1800.

    Article  CAS  Google Scholar 

  • Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9(2), 126–129.

    Article  CAS  Google Scholar 

  • Kao, S. J., Shiah, F. K., & Owen, J. S. (2004). Export of dissolved inorganic nitrogen in a partially cultivated subtropical mountainous watershed in Taiwan. Water Air Soil Poll, 156, 211–228.

    Article  CAS  Google Scholar 

  • Kao, S. J., Lee, T. Y., & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.

    Article  Google Scholar 

  • Lam, Q. D., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 97(2), 317–325.

    Article  Google Scholar 

  • Lee, J. Y. (2013). The Changing Stream Discharge Characteristics of Mountainous Catchments in Taiwan: From Observational and Modeling Approach, (Master Thesis, National Taiwan University, Taipei, Taiwan). Retrieved from https://hdl.handle.net/11296/x38egj

  • Lee, T. Y., Huang, J. C., Kao, S. J., & Tung, C. P. (2013). Temporal variation of nitrate and phosphate transport in headwater catchments: The hydrological controls and land use alteration. Biogeosciences, 10(4), 2617–2632.

    Article  CAS  Google Scholar 

  • Lee, T. Y., Shih, Y. T., Huang, J. C., Kao, S. J., Shiah, F. K., & Liu, K. K. (2014). Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River. Taiwan. Biogeosciences, 11(19), 5307–5321.

    Article  Google Scholar 

  • Lin, T. C., Shaner, P. J., Wang, L. J., Shih, Y. T., Wang, C. P., Huang, G. H., & Huang, J. C. (2015). Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrology and Earth System Sciences, 19(11), 4493–4504.

    Article  CAS  Google Scholar 

  • Lin, Y. F., Lin, C. Y., Chou, W. C., Lin, W. T., Tsai, J. S., & Wu, C. F. (2004). Modeling of riparian vegetated buffer strip width and placement: A case study in Shei Pa National Park. Taiwan. Ecological Engineering, 23(4–5), 327–339.

    Article  Google Scholar 

  • Liu, R., Zhang, P., Wang, X., Wang, J., Yu, W., & Shen, Z. (2014). Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model. Environmental Monitoring and Assessment, 186(12), 9011–9022.

    Article  Google Scholar 

  • Lo, S. L., & Chu, H. A. (2006). Evaluation of atmospheric deposition of nitrogen to the Feitsui Reservoir in Taipei. Water Science and Technology, 53(2), 337–344.

    Article  CAS  Google Scholar 

  • Loftas, T., & Ross, J. (1995). Dimensions of need: An atlas of food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.

  • Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9(1), 181–192.

    Article  Google Scholar 

  • Lu, C. M., & Chiang, L. C. (2019). Assessment of sediment transport functions with the modified SWAT-Twn model for a Taiwanese small mountainous watershed. Water, 11(9), 1749.

    Article  Google Scholar 

  • Malagó, A., Bouraoui, F., Vigiak, O., Grizzetti, B., & Pastori, M. (2017). Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Science of the Total Environment, 603, 196–218.

    Article  CAS  Google Scholar 

  • Marin, M., Clinciu, I., Tudose, N. C., Ungurean, C., Adorjani, A., Mihalache, A. L., Davidescu, A. A., Dinca, L., & Cacovean, H. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: a review. Environmental research, 184, 109330.

  • Meissner, R., Seeger, J., & Rupp, H. (2002). Effects of agricultural land use changes on diffuse pollution of water resources. Irrigation and Drainage: THe Journal of the International Commission on Irrigation and Drainage, 51(2), 119–127.

    Article  Google Scholar 

  • Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. 2011. Grassland, Soil and Water Research Laboratory, Agricultural ResearchService and Blackland Research Center, Texas. Agricultural Experiment Station, College Station, Texas.

  • Nkomoki, W., Bavorová, M., & Banout, J. (2018). Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia. Land Use Policy, 78, 532–538.

    Article  Google Scholar 

  • Panagopoulos, Y., Makropoulos, C., & Mimikou, M. (2011). Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales. Journal of Environmental Management, 92(10), 2823–2835.

    Article  CAS  Google Scholar 

  • Perez-Valdivia, C., Cade-Menun, B., & McMartin, D. W. (2017). Hydrological modeling of the pipestone creek watershed using the Soil Water Assessment Tool (SWAT): Assessing impacts of wetland drainage on hydrology. Journal of Hydrology: Regional Studies, 14, 109–129.

    Google Scholar 

  • Pohlert, T., Huisman, J. A., Breuer, L., & Frede, H. G. (2005). Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany. Advances in Geosciences, 5, 7–12.

    Article  Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.

    Article  Google Scholar 

  • Poudel, D. D., Lee, T., Srinivasan, R., Abbaspour, K., & Jeong, C. Y. (2013). Assessment of seasonal and spatial variation of surface water quality, identification of factors associated with water quality variability, and the modeling of critical nonpoint source pollution areas in an agricultural watershed. Journal of Soil and Water Conservation, 68(3), 155–171.

    Article  Google Scholar 

  • Ransom, K. M., Bell, A. M., Barber, Q. E., Kourakos, G., & Harter, T. (2018). A Bayesian approach to infer nitrogen loading rates from crop and land-use types surrounding private wells in the Central Valley. California. Hydrology and Earth System Sciences, 22(5), 2739–2758.

    Article  CAS  Google Scholar 

  • Rocha, J., Roebeling, P., & Rial-Rivas, M. E. (2015). Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model. Science of the Total Environment, 536, 48–58.

    Article  CAS  Google Scholar 

  • Santra, P., & Das, B. S. (2013). Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. Journal of Hydro-Environment Research, 7(4), 261–269.

    Article  Google Scholar 

  • Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., & Bouwman, A. F. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19(4).

  • Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., & Harrison, J. A. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global biogeochemical cycles, 24(4).

  • Shen, Z., Qiu, J., Hong, Q., & Chen, L. (2014). Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Science of the Total Environment, 493, 138–146.

    Article  CAS  Google Scholar 

  • Singh, S., Bhattarai, R., Negm, L. M., Youssef, M. A., & Pittelkow, C. M. (2020). Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois. Agricultural Water Management, 240, 106322.

  • Somura, H., Takeda, I., Arnold, J. G., Mori, Y., Jeong, J., Kannan, N., & Hoffman, D. (2012). Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. Journal of Hydrology, 450, 25–35.

    Article  CAS  Google Scholar 

  • Sorando, R., Comín, F. A., Jiménez, J. J., Sánchez-Pérez, J. M., & Sauvage, S. (2019). Water resources and nitrate discharges in relation to agricultural land uses in an intensively irrigated watershed. Science of the Total Environment, 659, 1293–1306.

    Article  CAS  Google Scholar 

  • Taipei Water Management Office. (2021). The Widespread Setting and Effectiveness Evaluation of On-site LID Facilities for Non-point Source Pollution Reduction of Tea Farms in Taipei Water Source Domain. Taipei Water Management Office, Water Resources Agency, Ministry of Economic Affairs, Taipei, Taiwan.

  • Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G., & Yang, X. (2019). A review of SWAT studies in Southeast Asia: Applications, challenges and future directions. Water, 11(5), 914.

    Article  Google Scholar 

  • Tan, M. L., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 103662.

  • Trybula, E. M., Cibin, R., Burks, J. L., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2015). Perennial rhizomatous grasses as bioenergy feedstock in SWAT: Parameter development and model improvement. GCB Bioenergy, 7, 1185–1202.

    Article  Google Scholar 

  • Uniyal, B., Jha, M. K., Verma, A. K., & Anebagilu, P. K. (2020). Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Science of the Total Environment, 744, 140737.

  • Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.

    Article  CAS  Google Scholar 

  • Water Resources Agency. (2010). Best Management Practice of Non-point Pollution from Tea Plantation in the Upper Watershed of Feitsui Reservoir, Report # R9901–0920, Water Resources Agency, Ministry of Economics, Taipei, Taiwan.

  • Wang, W., Xie, Y., Bi, M., Wang, X., Lu, Y., & Fan, Z. (2018). Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Applied Geography, 90, 200–213.

    Article  Google Scholar 

  • Wu, Y., & Liu, S. (2012). Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin. Journal of Environmental Monitoring, 14(9), 2350–2361.

    Article  CAS  Google Scholar 

  • Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1–2), 1–23.

    Article  Google Scholar 

  • Yen, H., Bailey, R. T., Arabi, M., Ahmadi, M., White, M. J., & Arnold, J. G. (2014). The role of interior watershed processes in improving parameter estimation and performance of watershed models. Journal of Environmental Quality, 43(5), 1601–1613.

    Article  CAS  Google Scholar 

  • Yu, C. K., & Cheng, L. W. (2008). Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Monthly Weather Review, 136(2), 497–521.

    Article  Google Scholar 

  • Zeweld, W., Van Huylenbroeck, G., Tesfay, G., & Speelman, S. (2017). Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. Journal of Environmental Management, 187, 71–81.

    Article  Google Scholar 

  • Zhai, X., Zhang, Y., Wang, X., Xia, J., & Liang, T. (2014). Non-point source pollution modelling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin’anjiang catchment. China. Hydrological Processes, 28(4), 1627–1640.

    Article  CAS  Google Scholar 

  • Zhang, X., Zou, T., Lassaletta, L., Mueller, N. D., Tubiello, F. N., Lisk, M. D., Lu, C., Conant, R. T., Dorich, C. D., Gerber, J., Tian, H., Bruulsema, T., Maaz, T. M. C., Nishina, K., Bodirsky, B. L., Popp, A., Bouwman, L., Beusen, A., Chang, J., … Davidson, E. A. (2021). Quantification of global and national nitrogen budgets for crop production. Nature Food, 2(7), 529–540.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Ministry of Science and Technology (MOST 110-2410-H-003-122-MY3), Taipei Water Management Office, Wager Resources Agency, and Innovation-Oriented Trilateral Project for Young Investigators of the NTU SYSTEM. We also thank Feitsui Reservoir Administration for providing weather and hydrological records.

Funding

This study was funded by Ministry of Science and Technology, Taiwan (MOST 110–2410-H-003–122-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Guan-Zhou Lin, Tsung-Yu Lee; Methodology: Guan-Zhou Lin; Formal analysis and investigation: Guan-Zhou Lin, Jr-Chuan Huang; Writing-original draft preparation: Guan-Zhou Lin; Writing-review and editing: Tsung-Yu Lee; Funding acquisition: Tsung-Yu Lee, Chia-Chun Ho; Resources: Shao-Yiu Hsu, Chia-Chun Ho, Chi-Feng Chen, Jr-Chuan Huang, Tsung-Yu Lee; Supervision: Shao-Yiu Hsu, Chia-Chun Ho, Chi-Feng Chen, Tsung-Yu Lee.

Corresponding author

Correspondence to Tsung-Yu Lee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GZ., Hsu, SY., Ho, CC. et al. Application of Soil and Water Assessment Tool (SWAT) to evaluate the fates of nitrogenous fertilizer in subtropical mountainous watershed tea farms. Environ Monit Assess 194, 213 (2022). https://doi.org/10.1007/s10661-022-09858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09858-0

Keywords

Navigation