Skip to main content

Advertisement

Log in

An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring and assessment of soil quality are important in mining areas. In this study, indexical, spatiotemporal, and chemometric models were developed to monitor and assess the pollution level and health risk of potentially toxic elements (PTEs) within the Iyamitet-Okurumutet mine province, SE Nigeria. Surface soils were sampled within the mine area and analyzed for pH, cation exchange capacity, organic matter, and PTEs (Pb, Zn, Cd, Mn, Fe, Ba) following standard techniques. It was revealed that the soils are slightly acidic and the enrichment of PTEs except for Cd (4.08 mg/kg−1) was within recommended standards. Contamination factor, enrichment factor, and pollution index suggest that the soils are moderately polluted. Geospatial maps and ecological risk indices revealed that higher ecological risk imprints seem to increase towards the south-eastern parts of the area. Chemometric analysis revealed that PTE enrichment in the soil is majorly influenced by anthropogenic activities. Further, bioavailability/bioaccessibility risk assessment index (BRAI) and health risk assessment models were developed to quantify the bioavailable/human bioaccessible portion of elements in soils and the associated health risks. The BRAI ranged from high (3 ≥ 5) to very high (> 5) risk of human bioaccessibility; hence, greater amount of PTEs will be bioaccessible for absorption into the human gastrointestinal system than they would for plants uptake. The hazard index and lifetime cancer risk (LCR) revealed that most of the samples present high chronic cancer risks from dermal contact and ingestion for children and adults. The LCR values ranged between 1.0E-6 and 1.0E − 04, with the children population showing greater vulnerability to cancer risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamu, C. I., & Nganje, T. N. (2009). Assessment of heavy metals pollution in sediments and surface water of river Benue, Makurdi, Nigeria. Journal of Applied Science, Engineering and Technology, 9.

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2015). Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology, Monitoring and Management, 3, 10–21.

  • Adamu, C. I., & Nganje, T. N. (2010). Heavy metal contamination of surface soil in relationships to land use patterns: A case study of Benue State. Nigeria. Material Science Application., 1, 127.

    Article  CAS  Google Scholar 

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2014). Hydrochemical assessment of pond and stream water near abandoned barite mine sites in parts of Oban massif and Mamfe Embayment, Southeastern Nigeria. Environmental Earth Sciences, 71, 3793–3811.

    Article  CAS  Google Scholar 

  • Adeniyi, A. A., Yusuf, K. O., & Okedeyi, O. O. (2008). Assessment of the exposure of two fish species to metals pollution in the Ogun river catchments, Kettu, Lagos, Nigeria. Environmental Monitoring and Assessment, 137, 451–458.

    Article  CAS  Google Scholar 

  • Adepoju-Bello, A. A., Ojomolade, O. O., Ayoola, G. A., & Coker, H. A. (2009). Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. The Nigerian Journal. Pharmacology, 42(1), 57–60.

    Google Scholar 

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406.

  • Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Process, 5, 363–383.

    Article  CAS  Google Scholar 

  • Aelion, C. M., Davis, H. T., McDermott, S., & Lawson, A. B. (2009). Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health. Science of the Total Environment, 407(7), 2216–2223.

    Article  CAS  Google Scholar 

  • Ahiamadjie, H., Serfor-Armah, Y., Tandoh, J., Gyampo, O., Dampare, S., & Nyarko, B. (2011). Elemental composition of vegetables cultivated in illegal mining towns in Ghana using neutron activation analysis. Journal of Radanal Nuclear Chemistry, 289(1), 1–6.

    Article  CAS  Google Scholar 

  • Akande, S. O., Ojo, O. J., Adekeye, O. A., Egenhoff, S. O., Obaje, N. G., & Erdtmann, B. D. (2011). Stratigraphic evolution and petroleum potential of middle cretaceous sediments in the lower and middle Benue Trough, Nigeria: Insights from new source rock facies evaluation. Petroleum Technology and Development Journal: An International Journal, 1, 1–34.

    Google Scholar 

  • Akoto, O., Ephramin, J. H., & Darko, G. (2008). Heavy metals pollution in surface soils in the vicinity of abundant railway serving workshop in Kumassi, Ghana. International Journal of Environmental Research, 2, 359–364.

    Google Scholar 

  • Akpeke, G. B. (2008). Investigation of the origin, nature, and occurrence of barite mineralization in Cross River State, Southeastern Nigeria. The University of Calabar, Nigeria (Unpub. Ph. D. thesis).

  • Alloway, B. J. (1995). Soil processes and the behaviour of metals. In: Alloway BJ (Ed.), Heavy Metals in Soils. Blackwell Academic and Professional Publishers, London.

  • Arno, H. R. (2007). Manganese Compounds. Ullmann’s Encyclopedia of Chemical Technology, 143, 56–123.

    Google Scholar 

  • Benhaddya, M. L., & Hadjel, M. (2014). Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environmental Earth Sciences, 71, 1473–1486.

    Article  CAS  Google Scholar 

  • Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy, Ecology and Environment, 2(2), 155–167.

  • Blume, H.-P., Bruemmer, G. W., Horn, R., Kandeler, E., Koegel-Knabner, I., Kretzschmar, R., et al. (2010). Scheffer/ Schachtschabel—Lehrbuch der Bodenkunde (16th ed.). Spektrum Akademischer Verlag.

    Book  Google Scholar 

  • Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (1985). Soil Chemistry John Wiley and Sons.

    Google Scholar 

  • Bowen, H. J. M. (1979). Environmental Chemistry of the Trace Elements Academic Press, New York (London).

  • Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56, 45–51.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian environmental quality guidelines. Soil Quality Guidelines for the Protection of Environmental and Human Health. Last updated 2007.

  • Chiang, C. T., Chang, C. K., Hwang, Y. H., Yuan, T. H., Su, C. C., Tsai, K. Y., & Lian, L. (2011). A critical exploration of blood and environmental Chromium concentration among oral cancer patients in an oral cancer prevalent area of Taiwan. Environmental Geochemistry and Health, 33, 469–476.

    Article  CAS  Google Scholar 

  • Cui, Z., Qiao, B. Z., & Wu, N. (2011). Contamination and distribution of heavy metals in urban and suburban soils in Zhangzhou City, Fujian. China. Environmental Earth Sciences, 64(6), 1607–1615.

    Article  CAS  Google Scholar 

  • DPR Department of Petroleum Resources. (Ministry of Petroleum and Natural Resources, Abuja, 2002).

  • EA (British Environment Agency). (2004). Soil screening values for use in UK ecological risk assessment. Bristol, UK: EA.

  • EA (British Environment Agency). (2009). Land contamination: Soil guideline values (SGVs). Science Report SC050021, Bristol, UK. https://www.gov.uk/government/publications/land-contamination-soil-guideline-valuessgvspublications/land-contamination-soil-guideline-valuessgvs. Accessed 24 Nov 2014.

  • Edet, A., & Okereke, C. S. (2014). Hydrogeologic framework of the shallow aquifers in the Ikom-Mamfe Embayment, Nigeria using an integrated approach. Journal of African Earth Sciences, 92, 25–44.

    Article  CAS  Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha, Nigeria. Analytical Letters. https://doi.org/10.1080/00032719.2020.1712606.

  • Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Analytical Letters, 53, 2812–2839.

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Ukah, B. U., Ubido, O. E., Unigwe, C. O. (2020). A chemometric approach to source apportionment, ecological and health risk assessment of heavy metals in industrial soils from southwestern Nigeria. International Journal of Environmental Analytical Chemistry, 1–19.

  • El-Amari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., & Essarraj, S. (2014). Impact of mine tailings on surrounding soils and ground water: Case of Kettaraold mine, Morocco. Journal of African Earth Sciences, 100, 437–449.

    Article  CAS  Google Scholar 

  • Environment Canada. (1978). A handbook of analytical methods Canada. Inland waters directorate, environment, Ottawa.

  • Fang, J., Wen, B., Shan, X. Q., Lin, J. M., & Owens, G. (2007). Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to noncontaminated soils. Environmental Pollution, 150, 209–217.

    Article  CAS  Google Scholar 

  • FAO/WHO (Food and Agriculture Organization / World Health Organization). (2016). General standard for contaminants and toxins in food and feed. Codex Alimentarius International Food Standards. CODEX STAN, 193–1995.

  • Fernandez-Turiel, J. L., Aceñolaza, P., Medina, M. E., et al. (2001). Assessment of a smelter impact area using surface soils and plants. Environmental Geochemistry and Health, 23, 65–78. https://doi.org/10.1023/A:1011071704610

    Article  CAS  Google Scholar 

  • Guo, Y., Fu, Y., Yan, S., Yang, Y., & Bao, Z. (2012). Heavy metal distribution between parent soil and pepper in an unpolluted area, Hainan Island. China. Environmental Earth Sciences, 66(4), 1083–1089.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Resources, 14, 975–1001.

    Google Scholar 

  • Han, F., Shan, X., Zhang, S., Wen, B., & Owens, G. (2006). Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant and Soil, 289, 355–368.

    Article  CAS  Google Scholar 

  • He, X., Li, P. (2020). Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr 6+): occurrence, sources and health risks. Exposure and Health, 1–17.

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110.

    Article  Google Scholar 

  • Herms, U., & Bruemmer, G. W. (1984). Einflussgoressen der Schwermetallloeslichkeit und -bindung in Boeden. Journal of Plant Nutrition and Soil Science, 147, 400–424.

    CAS  Google Scholar 

  • Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49, 37–51.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Vijver, M. G., & Peijnenburg, W. J. G. M. (2011). Bioavailability in soils. In F. A. Swartjes (Ed.), Dealing with contaminated sites: From theory toward practical application (pp. 721–747). Springer.

    Chapter  Google Scholar 

  • Hund-Rinke, K., & Korrdel, W. (2012). Ansaetze zur Bewertung der Verfuegbarkeit von Schadstoffen im nachsorgenden Bodenschutz—Teil III: Verfuegbarkeit/ Bioverfuegbarkeit von Schadstoffen fuer.

  • IARC. (2011). Overall evaluations of carcinogenicity to humans: as evaluated in IARC monographs volumes 1–82 (at total of 900 agents, mixtures and exposures). International Agency for Research on Cancer, Lyon.

  • Igwe, O., Adepehin, E. J., Iwuanyanwu, C., & Una, C. O. (2014). Risks associated with the mining of Pb–Zn minerals in some parts of the Southern Benue trough, Nigeria. Environmental Monitoring Assessment, 186, 3755–3765. https://doi.org/10.1007/s10661-014-3655-3

    Article  CAS  Google Scholar 

  • Igwe, O., & Omeka, M. E. (2021). Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach. International Journal of Energy Water Resources, 1–22.

  • Islam, S., Kawser, A., & Habibullah, A. M. (2016). Apportionment of heavy metals in soil and vegetables and associated health risks assessment. Stochastic Environmental Research and Risk Assessment, 30, 365–377.

  • Jahromi, M. A., Jamshidi-Zanjani, A., & Darban, A. K. (2020). Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: A comprehensive study. Environmental Earth Sciences, 79(14), 1–18.

    Google Scholar 

  • Jamshidi-Zanjani, A., Saeedi, M., & Li, L. Y. (2015). A risk assessment index for bioavailability of metals in sediments: Anzali International Wetland case study. Environmental Earth Sciences, 73, 2115–2126. https://doi.org/10.1007/s12665-014-3562-5

  • Jehan, S., Khan, S., Khattak, S. A., Muhammad, S., Rashid, A., & Muhammad, N. (2019). Hydrochemical properties of drinking water and their sources apportionment of pollution in Bajaur agency, Pakistan. Measurement, 139, 249–257.

    Article  Google Scholar 

  • Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8(1), 1–14.

    Google Scholar 

  • Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements—an environmental issue. In: Geoderma, 143–149.

  • Kabata-Pendias, A. (2002). Cadmium–an agricultural issue in Poland. In Report from a Cadmium Seminar on 128–10.

  • Kacmaz, H. (2020). Assessment of heavy metal contamination in natural waters of Dereli, Giresun: An area containing mineral deposits in northeastern Turkey. Environmental Monitoring and Assessment, 192(2), 1–12.

    Article  CAS  Google Scholar 

  • Kaiser, H., & F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Khan, M. U., Malik, R. N., & Mohammed, S. (2013). Human health risk assessment from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere, 93, 2230–2238.

    Article  CAS  Google Scholar 

  • Kim, K. R., Owens, G., & Naidu, R. (2009). Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian Journal of Soil Resources, 47, 166–176. https://doi.org/10.1071/SR08054

    Article  CAS  Google Scholar 

  • Kim, K. R., Owens, G., Naidu, R., & Kim, K. H. (2007a). Assessment techniques of heavy metal bioavailability in soil - a critical review. Korean Journal of Soil Science and Fertilizer, 40, 311–325.

    CAS  Google Scholar 

  • Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation—a critical review. Environmental Geochemistry and Health, 37(6), 1041–1061.

    Article  CAS  Google Scholar 

  • Kravchenko, J., Darrah, T. H., Miller, R. K., Lyerly, H. K., & Vengosh, A. (2014). A review of the health impacts of barium from natural and anthropogenic exposure. Environmental Geochemistry and Health, 36(4), 797–814.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Mohan, K. R. (2016). Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad. India. Environmental Earth Sciences, 75(5), 411.

    Article  CAS  Google Scholar 

  • Li, L. Y., Hall, K., Yi, Y., Mattu, G., McCallum, D., & Chen, M. (2009). Mobility and bioavailability of trace metals in the water-sediment system of the highly urbanized brunette watershed. Water, Air, and Soil Pollution, 197, 249–266. https://doi.org/10.1007/s11270-008-9808-7

    Article  CAS  Google Scholar 

  • Liu, G., Xue, W., Tao, L., Liu, X., Hou, J., Wilton, M., et al. (2014). Vertical distribution and mobility of heavy metals in agricultural soils along Jishui river affected by mining in Jiangxi Province, China. Clean: Soil. Air, Water, 42, 1450–1456.

    Article  CAS  Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechula, D., & Kwapulinski, J. (1997). Use of enrichment and contaminant factors together with geoaccumulation indexes to evaluate the contents of Cd, Cu, and Ni in the Rybnik Water Reservoir in Poland. Water, Air, and Soil Pollution, 93, 347–365.

  • Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723–733.

  • Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., & Kang, B. (2018). Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi County southeast China. Geoderma, 310, 99–106. https://doi.org/10.1016/j.geoderma.2017.09.016

    Article  CAS  Google Scholar 

  • Liu, J., Wiberg, D., Zehnder, A. J., & Yang, H. (2007). Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 26(1), 21–33.

  • Lu, S., Wang, Y., Teng, Y., & Yu, X. (2015). Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc–lead mining area in Hunan. Environmental Monitoring and Assessment, 187, 627. https://doi.org/10.1007/s10661-015-4835-5

    Article  CAS  Google Scholar 

  • Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Resources, 128, 27–34.

    CAS  Google Scholar 

  • Luo, X. S., Yu, S., & Li, X. D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004. https://doi.org/10.1016/j.apgeochem.2011.07.001

    Article  CAS  Google Scholar 

  • Macholz, R. M., Kaiser, D. B., Koerdel, W., Hund-Rinke, K., Derz, K., & Bernhardt, C. (2011). Evaluation of existing assessment approaches and development of a concept for the integrated assessment of the effects of priority pollutants across all pathways on the basis of their bioavailability. Text 59. Berlin: Umweltbundesamt.

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and Bioaccessibility of Metals in Fine Particles of Some Urban Soils. Archeology, Environmental Contamination and Toxicology, 55, 21–32. https://doi.org/10.1007/s00244-007-9086-1

    Article  CAS  Google Scholar 

  • Madrid, F., Diaz-Barrientos, E., & Madrid, L. (2008). Availability and bioaccessibility of metals in the clay fraction of urban soils of Sevilla. Environmental Pollution, 156, 605–610. https://doi.org/10.1016/j.envpol.2008.06.023

    Article  CAS  Google Scholar 

  • Mason, B., & Moore, C. B. (1982). Principles of Geochemistry. John Wiley and Sons, U.S.A.

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • Meers, E., Lamsal, S., Vervaeke, P., Hopgood, M., Lust, N., & Tack, F. M. G. (2005). Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environmental Pollution, 137, 354–364. https://doi.org/10.1016/j.envpol.2004.12.019

    Article  CAS  Google Scholar 

  • Meik, J. M., & Lawing, A. M. (2017). Considerations and pitfalls in the spatial analysis of water quality data and It's association with hydraulic fracturing. In Advances in Chemical Pollution, Environmental Management and Protection, 1, 227–256. Elsevier.

  • Mustapha, A. (2012). Application of principal component analysis & multiple regression models in surface water quality assessment. Journal of Environmental Science, 2(2), 16–23.

    Google Scholar 

  • Naylo, A., Pereira, S. I. A., Benidire, L., El-Khalil, H., Castro, P. M., Ouvrard, S., & Boularbah, A. (2019). Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient. Journal of Soils and Sediments, 19(5), 2153–2165.

    Article  CAS  Google Scholar 

  • Nganje, T. N., Adamu, C. I., Ekwere, A. S., Ibe, K. A., Edet, A., & Hursthouse, A. S. (2021). Environmental geochemical signature of shale in pollution assessment of trace metals in soil and water in parts of southern Benue trough, southeastern Nigeria. International Journal of Environmental Analytical Chemistry, 1–21.

  • Nganje, T. N., Adamu, C. I., Ekwere, A. S., Ibe, K. A., Edet, A., & Hursthouse, A. S. (2020). The concentration, distribution and health risk from potentially toxic elements in the soil-plant-water system developed on black shales in SE Nigeria. Journal of African Earth Science, 165, 103806.

  • Nganje, T. N., Adamu, C. I., & Ukpong, E. E. (2010). Heavy metal concentrations in soils and plants in the vicinity of Arufu lead–zinc mine, Middle Benue Trough, Nigeria. Chinese Journal of Geochemistry, 29, 167–174. https://doi.org/10.1007/s11631-010-0167-x

  • Ngole-Jeme, V. M. (2016). Heavy metal in soils along unpaved roads in South West Cameroon: Contamination levels and health risks. Ambio, 45(2), 374–386.

    Article  CAS  Google Scholar 

  • Obasi, P. N., & Akudinobi, B. B. (2019). Heavy metals occurrence, assessment and distribution in water resources of the lead–zinc mining areas of Abakaliki, Southeastern Nigeria. International Journal of Environmental Science Technology, 16(12), 8617–8638.

    Article  CAS  Google Scholar 

  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(184), 659. https://doi.org/10.1007/s13201-020-01233-z

    Article  CAS  Google Scholar 

  • Obiora, S. C., Chukwu, A., Toteu, S. F., & Davies, T. C. (2016). Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, southeastern Nigeria. Journal of Geology Society of India, 87, 453–462.

    Article  CAS  Google Scholar 

  • Olade, M. A. (1976). On the genesis of Pb-Zn deposits in Nigeria’s Benue Rift (Aulagogen): A reinterpretation. Journal of Mining Geology, 13, 20–27.

    CAS  Google Scholar 

  • Omeka, M. E., & Igwe, O. (2021). Heavy metals concentration in soils and crop plants within the vicinity of abandoned mine sites in Nigeria: an integrated indexical and chemometric approach. International Journal of Environmental Analytical Chemistry, 1–19.

  • Pam, A. A., Sha’Ato, R., & Offem, J. O. (2013). Contributions of automobile mechanic sites to heavy metals in soil: a case study of north bank mechanic village Makurdi, Benue State, Central Nigeria. Journal of Chemical, Biological and Physical Sciences, 3, 2337–2347.

  • Pavilonis, B., Grassman, J., & Johnson, G. et al (2017). Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environmental Res, 154, 1–9. https://doi.org/10.1016/j.envres.2016.12.010

  • Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373.

    Article  CAS  Google Scholar 

  • Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution157(2), 680-689.

  • Pourret, O., & Hursthouse, A. (2019). It’s time to replace the term ’’Heavy Metals‘‘ with ’’Potentially Toxic Elements‘‘ When reporting environmental research. International Journal of Environmental Resources and Public Health, 16(22). https://doi.org/10.3390/ijerph16224446

  • Pourret, O., Bollinger, J. C., & Hursthouse, A. (2021). Heavy Metal: a misused term?. Acta Geochimica, 1–6.

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241.

  • Reichenberg, F., & Mayer, P. (2006). Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils. Environmental Toxicology and Chemistry, 25, 1239–1245.

    Article  CAS  Google Scholar 

  • Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Giucis, A., & Pasieczna, A. (2003). Agricultural Soils in Northern Europe.

  • Sauve, S., McBride, M., & Hendershot, W. (1998). Soil solution speciation of lead (II): Effects of organic matter and pH. Soil Science Society of America Journal, 62(3), 618–621.

    Article  CAS  Google Scholar 

  • Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological Forum International Journal, 2(2), 112–121.

    Google Scholar 

  • Siegel, F. R. (2002). Environmental Geochemistry of Potential Toxic Metals (Springer – Verlog, New York, 2002), p. 236.

  • Simex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3, 315–323.

    Article  Google Scholar 

  • Souri, M. K., Alipanahi, N., Hatamian, M., Ahmadi, M., & Tesfamariam, T. (2018). Elemental Profile of Heavy Metals in Garden cress, Coriander, Lettuce and Spinach, Commonly Cultivated in Kahrizak. South of Tehran-Iran. Open Agriculture, 3, 3237.

    Google Scholar 

  • Sparks, D. L. (2005). Toxic metals in the environment: The role of surfaces. Elements, 1, 193–197.

    Article  CAS  Google Scholar 

  • Taiwo, A. M. (2019). A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere, 220, 1126–1140.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution.

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology, 133–164.

  • Tel, D. A., & Hagarty, M. (1984). Soil and Plant Analysis Study Guide for Agricultural Laboratory, Directors and Technologies Working in Tropical Regions. International Institute of Tropical Agriculture, University of Guelp, Canada.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metals levels in estuaries and the formation of a pollution index. Helgol€ander Meeresuntersuchungen33(1–4), 566–75. https://doi.org/10.1007/BF02414780

  • Tytła, M., & Kostecki, M. (2019). Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic “hot spot” area (Poland). Environmental Earth Science, 78(5), 1–17.

    Article  CAS  Google Scholar 

  • Udo, E. J., Ibia, T. O., Ogunwale, J. A., Ano, A. O., & Esu, I. E. (2009). Manual of Soil. Sibon Books Ltd, Lagos.

    Google Scholar 

  • Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291–303.

    Article  Google Scholar 

  • US EPA (United States Environment Protection Agency). (2005). Ecological soil screening level (Eco-SSL) guidance and documents. Washington DC. Available at: http://www.epa.gov/oswer/riskassessment/ecorisk/ecossl.htm. Accessed 24 Nov 2014.

  • US-EPA (US Environmental Protection Agency). (1989). Risk assessment guidance for superfund, Vol. 1, Human health evaluation manual (Part A). Office of Emergency and Remedial Response.

  • US-EPA (US Environmental Protection Agency). (2017). National recommended water quality criteria-aquatic life criteria table and human health criteria table. https://www.epa.gov.wqc/national-recommended-water-qualitycriteria-aquatic-life-criteria-table. Accessed 25 Oct 2020.

  • US EPA IRIS (US Environmental Protection Agency)’s Intergrated Risk Information System, (2011). Environmental Protection Agency Region I, Washington DC 20460.US EPA, 2012. http://www.epa.gov/iris

  • Wong, J. W. C., Li, K. L., Zhou, L. X., & Selvam, A. (2007). The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge. Geoderma, 137, 310–317.

    Article  CAS  Google Scholar 

  • Xiaodong, H., Jianhua, W., & Song, H. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment: An International Journal l, 25(1–2), 32–51. https://doi.org/10.1080/10807039.2018.1531693

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Li, J., Zhang, G., & Covaci, A. (2018). Concentration and spatial distribution of organophosphate esters in the soil-sediment profile of Kathmandu Valley, Nepal: Implication for risk assessment. Science of the Total Environment, 613, 502–512.

    Article  CAS  Google Scholar 

  • Yap, D. W., Adezrian, J., Khairiah, J., Ismail, B. S., & Ahmad-Mahir, R. (2009). The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agriculture and Environmental Science, 6, 16–19.

    CAS  Google Scholar 

  • Zhang, L., Ye, X., Feng, H., Jing, Y., Quyang, T., Yu, X., Liang, R., Gao, C., & Chen, W. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54, 974–982.

    Article  CAS  Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Community of Soil Science Planning, 41, 820–831. https://doi.org/10.1080/00103621003592341

    Article  CAS  Google Scholar 

  • Zhou, L. X., & Wong, J. W. C. (2003). Behavior of heavy metals in soils: Effect of dissolved organic matter. In H. M. Selim & W. L. Kingery (Eds.), Geochemical and hydrological reactivity of heavy metals in soil (pp. 245–269). Lewis Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Omeka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omeka, M.E., Igwe, O. & Unigwe, C.O. An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria. Environ Monit Assess 194, 212 (2022). https://doi.org/10.1007/s10661-022-09856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09856-2

Keywords

Navigation