Skip to main content

Advertisement

Log in

Comparative life cycle assessment of three 2030 scenarios of the Brazilian cement industry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The cement industry is intensive in energy and feedstock use. It includes three main phases: raw materials and energy supply, transport, and manufacturing. The sector is known for its considerable environmental impacts. The increase in energy efficiency and the use of non-fossil fuels and raw materials are considered mature technologies in cement industries. We evaluate different environmental impacts of the production of 1 t of cement in four Brazilian scenarios. We compare one business-as-usual reference scenario (case 1) to three alternative 2030 carbon mitigation sectoral plan scenarios (cases 2, 3a, and 3b) that assume mature technologies. We analyze all 18 impact categories within the ReCiPe 2016 Life Cycle Assessment methodology. Results show reductions in 17 impact categories, ranging from no change in ozone depletion (case 2) to 39% reduction in fossil resource scarcity (case 3b). The effects on climate change decreased 14% in case 2 and 33% in cases 3a and 3b. The clinkerization process is the greatest contributor to atmospheric impacts, while raw material consumption to toxicity impacts. In contrast, there is no single main process contributing to resource depletion impacts. The changes in cement production lead to carbon emission reductions above expected levels and to reductions in other environmental impact categories modeled in ReCiPe 2016 method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Abeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens. Greece. Waste Management, 32(1), 213–219.

    Article  Google Scholar 

  • ABNT. (2009a). NBR ISO 14040: Gestão Ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Rio de Janeiro, Brazil: Associação Brasileira de Normas Técnicas.

  • ABNT. (2009b). NBR ISO 14044: Gestão Ambiental – Avaliação do ciclo de vida – Requisitos e orientações. Rio de Janeiro, Brazil: Associação Brasileira de Normas Técnicas.

  • ABNT. (2018). NBR 16697: Cimento Portland - Requisitos. Rio de Janeiro, Brazil: Associação Brasileira de Normas Técnicas.

  • Ayer, N. W., & Dias, G. (2018). Supplying renewable energy for Canadian cement production: Life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. Journal of Cleaner Production, 175, 237–250.

    Article  CAS  Google Scholar 

  • Berriel, S. S., Favier, A., Domínguez, E. R., Machado, I. R. S., Heierli, U., Scrivener, K., Hernández, F. M., & Habert, G. (2016). Assessing the environmental and economic potential of limestone calcined clay cement in Cuba. Journal of Cleaner Production, 124, 361–369.

    Article  Google Scholar 

  • Boesch, M. E., Koehler, A., & Hellweg, S. (2009). Model for cradle-to-gate life cycle assessment of clinker production. Environmental Science & Technology, 43(19), 7578–7583.

    Article  CAS  Google Scholar 

  • Boesch, M. E., & Meister, R. (2019). LCA4Waste. Module: cement kiln. Switzerland: ETH Zürich, Chair of Ecological Systems Design. https://esd.ifu.ethz.ch/downloads/lca4waste.html. Accessed 02 December 2019.

  • Brasil. (2006). Resolução CONAMA nº 382, de 26 de dezembro de 2006. Estabelece os limites máximos de emissão de poluentes atmosféricos para fontes fixas. Conselho Nacional do Meio Ambiente. Brasília, Brazil.

  • Brown, D., Sadiq, R., & Hewage, K. (2014). An overview of air emission intensities and environmental performance of grey cement manufacturing in Canada. Clean Technologies and Environmental Policy, 16(6), 1119–1131.

    Article  CAS  Google Scholar 

  • Bushi, L., & Meil, J. (2014). An environmental life cycle assessment of Portland-limestone and ordinary Portland cements in concrete. Ottawa, Canada: Athena Sustainable Materials Institute. http://www.athenasmi.org/wp-content/uploads/2014/01/CAC_PLCvsOPC_Final_Technical_Brief.pdf. Accessed 10 March 2020.

  • CEN. (2017). DIN EN 16908: Cement and building lime–environmental product declarations–product category rules complementary to EN 15804. European Committee for Standardization.

    Google Scholar 

  • CNI/ABCP. (2012). Indústria brasileira de cimento: base para a construção do desenvolvimento. Brasília, Brazil: Confederação Nacional da Indústria.

  • Çankaya, S., & Pekey, B. (2019). A comparative life cycle assessment for sustainable cement production in Turkey. Journal of Environmental Management, 249, 12 p.

  • Dorileo, I. L., Bajay, S. V., & Gorla, F. D. (2010). Oportunidades de eficiência energética para indústria—relatório setorial: setor cimenteiro. Brasília, Brazil: Confederação Nacional da Indústria.

  • EC. (2010). International Reference Life Cycle Data System Handbook—general guide for life cycle assessment—detailed guidance. First edition March 2010. EUR 24708 EN. Italy: European Comission, Joint Research Centre, Institute for Environment and Sustainability. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC48157/ilcd_handbook-general_guide_for_lca-detailed_guidance_12march2010_isbn_fin.pdf. Accessed 22 May 2017.

  • EC. (2012). Product environmental footprint guide. Italy: European Comission, Joint Research Centre, Institute for Environment and Sustainability. http://ec.europa.eu/environment/eussd/pdf/footprint/PEF%20methodology%20final%20draft.pdf. Accessed 21 August 2019.

  • ECN. (2019). Phyllis2—database for the physico-chemical composition of (treated) lignocellulosic biomass, micro- and macroalgae, various feedstocks for biogas production and biochar. Netherlands: Energy Research Centre of the Netherlands. https://phyllis.nl. Accessed 06 December 2019.

  • Ecoinvent Centre. (2018). Ecoinvent data v3.4 (2017). Switzerland: Swiss Centre for Life Cycle Inventories. https://www.ecoinvent.org/home.html. Accessed 15 March 2018.

  • EPE. (2019a). Balanço Energético Nacional 2019: ano base 2018. Rio de Janeiro, Brazil: Empresa de Pesquisa Energética. https://ben.epe.gov.br. Accessed 06 December 2019.

  • EPE. (2019b). BEN—Séries Históricas Completas. Rio de Janeiro, Brazil: Empresa de Pesquisa Energética. http://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/BEN-Series-Historicas-Completas. Accessed 12 December 2019.

  • Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015a). Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98, 272–281.

    Article  CAS  Google Scholar 

  • Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015b). Improving the CO2 performance of cement, part II: Framework for assessing CO2 improvement measures in the cement industry. Journal of Cleaner Production, 98, 282–291.

    Article  CAS  Google Scholar 

  • Ferreira, J. V. R. (2004). Análise de Ciclo de Vida dos Produtos. Viseu, Portugal: Instituto Politécnico de Viseu. http://www.estgv.ipv.pt/PaginasPessoais/jvf/Gest%C3%A3o%20Ambiental%20-%20An%C3%A1lise%20de%20Ciclo%20de%20Vida.pdf. Accessed 26 December 2018.

  • Frischknecht, R. (1998). Life cycle inventory analysis for decision-making scope-dependent inventory system models and context-specific joint product allocation. DSc thesis. Swiss Federal Institute of Technology Zurich.

    Google Scholar 

  • Galvez-Martos, J. L., & Schoenberger, H. (2014). An analysis of the use of life cycle assessment for waste co-incineration in cement kilns. Resources, Conservation and Recycling, 86, 118–131.

    Article  Google Scholar 

  • García-Gusano, D., Garraín, D., Herrera, I., Cabal, H., & Lechón, Y. (2015a). Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production. Journal of Cleaner Production, 104, 328–338.

  • García-Gusano, D., Herrera, I., Garraín, D., Lechón, Y., & Cabal, H. (2015b). Life cycle assessment of the Spanish cement industry: Implementation of environmental-friendly solutions. Clean Technologies and Environmental Policy, 17, 59–73.

  • Georgiopoulou, M., & Lyberatos, G. (2018). Life cycle assessment of the use of alternative fuels in cement kilns: A case study. Journal of Environmental Management, 216, 224–234.

    Article  Google Scholar 

  • Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2013). ReCiPe 2008—a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation. First edition (version 1.08). Bilthoven, Netherlands: National Institute for Public Health and the Environment.

  • Goldemberg, J. (2016). Mapeamento Tecnológico do Cimento—Projeto Roadmap Brasil. In VII Foro y III Mision Multipaís de Cambio Climático y Coprocesamiento. São Paulo, Brazil, 17–19 oct. 2016. http://www.ficem.org/boletines/Boletines_2016/SAVE-THE-DATE-FORO-Y-MISION-MULTIPAIS-2016/BOLETIN%20DE%20RESULTADOS/PRESENTACIONES/17%20DE%20OCTUBRE/4.%20Jose%CC%81%20Goldemberg.pdf. Accessed 19 December 2018.

  • Gómez, D. R., Watterson, J. D., Americano, B. B., Ha, C., Marland, G., Matsika, E., Namayanga, L. N., Osman-Elasha, B., Saka, J. D. K., & Treanton, K. (2006). Stationary combustion. In S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (v. 2, ch. 2). Japan: IGES. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol3.html. Accessed 09 December 2019.

  • GoogleMaps. (2019). GoogleMaps. https://www.google.com.br/maps. Accessed 17 December 2019.

  • Greendelta. (2019). openLCA. Version 1.9. Berlim, Germany: Greendelta. http://www.openlca.org. Accessed 15 August 2019.

  • Grigore, M., Sakurovs, R., French, D., & Sahajwalla, V. (2008). Mineral reactions during coke gasification with carbon dioxide. International Journal of Coal Geology, 75(4), 213–224.

    Article  CAS  Google Scholar 

  • Güereca, L. P., Torres, N., & Juárez-López, C. R. (2015). The co-processing of municipal waste in a cement kiln in Mexico. A life-cycle assessment approach. Journal of Cleaner Production, 107, 741–748.

    Article  Google Scholar 

  • Gutiérrez, A. S., Eras, J. J. C., Gaviria, C. A., Caneghem, J. V., & Vandecasteele, C. (2017). Improved selection of the functional unit in environmental impact assessment of cement. Journal of Cleaner Production, 168, 463–473.

    Article  Google Scholar 

  • Haupt, M., Kägi, T., & Hellweg, S. (2018). Life cycle inventories of waste management processes. Data in Brief, 19, 1441–1457.

    Article  Google Scholar 

  • Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 120, 199–208.

    Article  Google Scholar 

  • Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M. D. M., Hollander, A., Zijp, M., & Van Zelm, R. (2017). ReCiPe 2016 v1.1—a harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization. RIVM Report 2016–0104. Bilthoven, Netherlands: National Institute for Public Health and the Environment.

  • IEA. (2007). Tracking industrial energy efficiency and CO2 emissions. Paris, France: International Energy Agency. https://www.iea.org/publications/freepublications/publication/tracking_emissions.pdf. Accessed 15 February 2018.

  • Jakobsen, J., Roussanaly, S., & Anantharaman, R. (2017). A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, 144, 523–539.

    Article  CAS  Google Scholar 

  • Jordal, K., Voldsund, M., Størset, S., Fleiger, K., Ruppert, J., Spörl, R., Hornberger, M., & Cinti, G. (2017). CEMCAP—making CO2 capture retrofittable to cement plants. Energy Procedia, 114, 6175–6180.

    Article  CAS  Google Scholar 

  • Junior, G. R. O. R. (2016). Análise da cadeia de suprimentos do coque de petróleo na indústria cimenteira brasileira. Postgraduate dissertation. Universidade Federal do Paraná.

    Google Scholar 

  • Kellenberger, D., Althaus, H. J., Künniger, T., Jungbluth, N., Lehmann, M., & Thalmann, P. (2007). Life cycle inventories of building products. Final report ecoinvent Data v2.0 No. 7. Dübendorf, Switzerland: Swiss Centre for Life Cycle Inventories.

  • Konieczynski, J., Zajusz-Zubek, E., & Jablonska, M. (2012). The Release of Trace Elements in the Process of Coal Coking. The Scientific World Journal, 2012, 8.

  • Kuenen, J., Berdowski, J., van der Most, P., Boer, R. W., Rentz, O., Oertel, D., Pacyna, J. M., Pierce, M., Trozzi, C., Pulles, T., & Appelman, W. (2019). Cement production. In European Monitoring and Evaluation Programme/European Environment Agency. EMEP/EEA air pollutant emission inventory guidebook 2019: technical guidance to prepare national emission inventories. Luxembourg: Publications Office of the European Union. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019. Accessed 07 January 2022.

  • Li, C., Cui, S., Nie, Z., Gong, X., Wang, Z., & Itsubo, N. (2015). The LCA of Portland cement production in China. The International Journal of Life Cycle Assessment, 20(1), 117–127.

    Article  CAS  Google Scholar 

  • Luiz, I. M. C. (2016). Avaliação das emissões atmosféricas do setor de coprocessamento no estado de minas gerais: Análise dos dados de automonitoramento. Bachelor dissertation. Centro Federal de Educação Tecnológica de Minas Gerais.

    Google Scholar 

  • Ma, J. J., Yao, H., Luo, G. Q., Xu, M. H., Han, J., & He, X. M. (2010). Distribution of Hg, As, Pb, and Cr in a coke oven plant. Energy & Fuels, 24(9), 5289–5290.

    Article  CAS  Google Scholar 

  • Malard, A. A. M. (2016). Avaliação ambiental do setor de coprocessamento no estado de Minas Gerais. DSc thesis. Universidade Estadual de Campinas.

    Google Scholar 

  • Moretti, L., & Caro, S. (2017). Critical analysis of the life cycle assessment of the Italian cement industry. Journal of Cleaner Production, 152, 198–210.

    Article  Google Scholar 

  • Nomura, S. (2010). Behavior of coal chlorine in cokemaking process. International Journal of Coal Geology, 83(4), 423–429.

    Article  CAS  Google Scholar 

  • Oliveira, G. A. S. (2015). Mercado de insumos para cimento: aspectos estruturais e exercício empírico. Brasília, Brazil: CADE. http://www.cade.gov.br/acesso-a-informacao/publicacoes-institucionais/dee-publicacoes-anexos/documento-de-trabalho-dee-002-2015.pdf. Accessed 27 February 2019.

  • Panahandeh, A., Asadollahfardi, G., & Mirmohammadi, M. (2017). Life cycle assessment of clinker production using refuse-derived fuel: A case study using refuse-derived fuel from Tehran municipal solid waste—reducing emissions and conserving fossil fuel in cement making and making beneficial use of solid waste. Environmental Quality Management, 27(1), 57–66.

    Article  Google Scholar 

  • Passuello, A. C. B., Oliveira, A. F., Costa, E. B., & Kirchheim, A. P. (2014). Aplicação da Avaliação do Ciclo de Vida na análise de impactos ambientais de materiais de construção inovadores: Estudo de caso da pegada de carbono de clínqueres alternativos. Ambiente Construído, 14(4), 7–20.

    Article  Google Scholar 

  • Punhagui, K. R. G., Oliveira, L. S., De Souza, J. F. T., & John, V. M. (2018). Estudo de Baixo Carbono para a Indústria de Cimento no Estado de São Paulo de 2014 a 2030. São Paulo, Brazil: CETESB. https://cetesb.sp.gov.br/proclima/estudo-de-baixo-carbono-para-a-industria-do-estado-de-sao-paulo-de-2014-a-2030-2. Accessed 02 December 2019.

  • Rodrigues, A. F. S., & Fonseca, D. S. (2009). Calcário – Gipsita – Cimento. In A. F. S. Rodrigues (Coord.), Economia Mineral do Brasil (pp. 636–654). Brasília, Brazil: DNPM. http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-e-economia-mineral/outras-publicacoes-1/outras-publicacoes. Accessed 14 February 2019.

  • Ruan, S., & Unluer, C. (2016). Comparative life cycle assessment of reactive MgO and Portland cement production. Journal of Cleaner Production, 137, 258–273.

    Article  CAS  Google Scholar 

  • Saade, M. R. M., Da Silva, M. G., & Gomes, V. (2015). Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making. Resources, Conservation and Recycling, 99, 40–47.

    Article  Google Scholar 

  • Salas, D. A., Ramirez, A. D., Rodríguez, C. R., Petroche, D. M., Boero, A. J., & Duque-Rivera, J. (2016). Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. Journal of Cleaner Production, 113, 114–122.

    Article  Google Scholar 

  • Santi, A. M. M. (2003). Co-incineração e co-processamento de resíduos industriais perigosos em fornos de clínquer: investigação no maior pólo produtor de cimento do País, Regiao Metropolitana de Belo Horizonte, MG, sobre os riscos ambientais, e propostas para a segurança química. DSc thesis: São Paulo, Brazil :Universidade Estadual de Campinas.

  • Sea-Distances. (2019). Sea-Distances. https://sea-distances.org. Accessed 17 December 2019.

  • SEDES. (2019). Portos. Espírito Santo, Brazil: Secretaria de Desenvolvimento do Estado do Espírito Santo. https://sedes.es.gov.br/portos. Accessed 17 December 2019.

  • Silva, D. A. L. (2011). Data set ‘hardwood forestry, eucalyptus ssp’. Banco Nacional de Inventários do Ciclo de Vida, Instituto Brasileiro de Informação em Ciência e Tecnologia, Ministério da Ciência, Tecnologia, Inovações e Comunicações. Brasília, Brazil: MCTIC. http://sicv.acv.ibict.br. Accessed 04 December 2019.

  • Silva, E. S. (2017). As ISO 50001 e ISO 14040 aplicadas a indústria cimenteira: comparação entre fontes fóssil e renovável de energia térmica. MSc dissertation. Distrito Federal, Brazil: Universidade de Brasília.

  • SNIC. (2013). Relatório Anual Sindicato Nacional da Indústria do Cimento 2013. Rio de Janeiro, Brazil: Sindicato Nacional da Indústria do Cimento. http://snic.org.br/numeros-relatorio-anual.php. Accessed 16 May 2018

  • Song, D., Yang, J., Chen, B., Hayat, T., & Alsaedi, A. (2016). Life-cycle environmental impact analysis of a typical cement production chain. Applied Energy, 164, 916–923.

    Article  Google Scholar 

  • Stafford, F. N., Dias, A. C., Arroja, L., Labrincha, J. A., & Hotza, D. (2016a). Life cycle assessment of the production of Portland cement: A Southern Europe case study. Journal of Cleaner Production, 126, 159–165.

  • Stafford, F. N., Raupp-Pereira, F., Labrincha, J. A., & Hotza, D. (2016b). Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137, 1293–1299.

  • UNFCCC. (2012). Partial Fuel Switching to Agricultural Wastes, Sewage Sludge and Refuse Derived Fuel (RDF) at Arabian cement plant. Project Design Document. Bonn, Germany: United Nations Framework Convention on Climate Change. https://cdm.unfccc.int/Projects/DB/RWTUV1356603354.08/view. Accessed 17 July 2019.

  • USGS. (2020). Mineral Commodity Summaries 2020. United States of America: United States Geological Survey. https://www.usgs.gov/centers/nmic/mineral-commodity-summaries. Accessed 11 November 2020.

  • Uveg, R. (2013). LCA4Waste—evaluation of municipal solid waste treatment options. In International Conference 2013 – Sustainable Landfills and Waste Management. Novi Sad, Serbia.

  • Van Eygen, E., Laner, D., & Fellner, J. (2018). Integrating high-resolution material flow data into the environmental assessment of waste management system scenarios: The case of plastic packaging in Austria. Environmental Science & Technology, 52(19), 10934–10945.

    Article  Google Scholar 

  • Vázquez-Rowe, I., Ziegler-Rodriguez, K., Laso, J., Quispe, I., Aldaco, R., & Kahhat, R. (2019). Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling, 142, 283–292.

    Article  Google Scholar 

  • Visedo, G., & Pecchio, M. (2019). Roadmap Tecnológico do Cimento: Potencial de Redução das Emissões de Carbono da Indústria do Cimento Brasileira até 2050. Rio de Janeiro, Brazil: Sindicato Nacional da Indústria do Cimento. https://abcp.org.br/wp-content/uploads/2019/10/Roadmap_Tecnologico_Cimento_Brasil_Book-1.pdf. Accessed 02 December 2019.

  • Yang, D., Fan, L., Shi, F., Liu, Q., & Wang, Y. (2017). Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—a case study in China. Resources, Conservation and Recycling, 119, 60–68.

    Article  Google Scholar 

  • Zajusz-Zubek, E., & Konieczynski, J. (2003). Dynamics of trace elements release in a coal pyrolysis process. Fuel, 82(10), 1281–1290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Gonzalo Visedo, Head of Environment and Sustainability at the Brazilian National Union of the Cement Industry (SNIC), for technical support.

Funding

This work was supported in part by the Brazilian National Council for Scientific and Technological Development (CNPq), grant number 141357/2017–7.

Author information

Authors and Affiliations

Authors

Contributions

Giuseppe Cernicchiaro Palermo: conceptualization, methodology, formal analysis, writing — original draft, and writing — review and editing. Ana Carolina Oliveira Fiorini: formal analysis and writing — review and editing. David Alves Castelo Branco: supervision and writing — review and editing. Marcos Aurélio Vasconcelos de Freitas: supervision and writing — review and editing.

Corresponding author

Correspondence to Giuseppe Cernicchiaro Palermo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Table 7 Compositions and characteristics of fuels (coal coke and charcoal) considered in the studied cases
Table 8 Compositions and characteristics of fuels (RDF and wood pellets) considered in the studied cases
Table 9 Compositions and characteristics of fuels (sugarcane bagasse and rice husks) considered in the studied cases

Appendix 2

Table 10 Life cycle inventory of clinker production considered in case 1
Table 11 Life cycle inventory of clinker production considered in case 2
Table 12 Life cycle inventory of clinker production considered in case 3

Appendix 3

Table 13 Life cycle inventory of cement production considered in case 1
Table 14 Life cycle inventory of cement production considered in case 2
Table 15 Life cycle inventory of cement production considered in case 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, G.C., Castelo Branco, D.A., Fiorini, A.C.O. et al. Comparative life cycle assessment of three 2030 scenarios of the Brazilian cement industry. Environ Monit Assess 194, 153 (2022). https://doi.org/10.1007/s10661-022-09822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09822-y

Keywords