Skip to main content

Advertisement

Log in

Remotely sensed image interpretation for assessment of land use land cover changes and settlement impact on allocated irrigation water in Multan, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrial revolution and rapid population growth are responsible for alteration of land into different settlements. These changes may lead to change in land use (LU) and land cover (LC). The LULC changes have impact on hydrological regimes including streams flow pattern and allocated irrigation water (water allocation through Warabandi system). The present study aimed to identify the LULC changes and settlement impact on allocated water using the unsupervised classification and normalized difference vegetation index (NDVI) of Landsat images for the years of 1990 to 2020 in Multan District. The accuracy assessment and Kappa coefficient were also investigated to evaluate quality of results derived from the classified images. The results show that the reduction in waterbody, spare, and dense vegetation was −7.6, −1.7, and −30.7%, respectively. The settlements, barren, and crop lands have increased to 25.2, 10.1, and 4.6%, respectively, from 1990 to 2020. The values of kappa coefficient (0.84–0.85) showed very good level of classification. In addition, the volume of water loss due to change of LULC from waterbody into settlements, barren land, crop land, spare, and dense vegetation was found approximately 472, 44, 133, 54, and 85 m3, respectively, in last 30 years. This volume of water is not reaching equitably to the farming community because of the LU and LC changes and urban settlements. The results indicated that remotely sensed image interpretation technique may be a useful for reallocation of water among farmers in an equitable and efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available from the corresponding author on reasonable request.

References

  • Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2019). Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers, 10, 389–403. https://doi.org/10.1016/j.gsf.2017.10.010

    Article  Google Scholar 

  • Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868

    Article  Google Scholar 

  • Ahmad, F. (2013). Land degradation pattern using geo-information technology for Kot Addu, Punjab Province, Pakistan. Global Journal of Human-Social Science: B Geography Geo-Sciences, Disaster Environment, 13, 1–16.

    Google Scholar 

  • Ahmad, W., Jupp, L. B., & Nunez, M. (1992). Land cover mapping in a rugged terrain area using landsat mss data. International Journal of Remote Sensing, 13, 673–683. https://doi.org/10.1080/01431169208904145

    Article  Google Scholar 

  • Ahsen, R., Khan, Z. M., Farid, H. U., Shakoor, A., & Ali, I. (2020). Estimation of cropped area and irrigation water requirement using remote sensing and GIS. JAPS: Journal of Animal & Plant Sciences, 30, 876–884. https://doi.org/10.36899/JAPS.2020.4.01030

  • Algorithms, M. O., Saeidian, B., Mesgari, M. S., & Pradhan, B. (2007). Irrigation water allocation at farm level based on temporal cultivation-related data using.

  • Allawai, M. F., & Ahmed, B. A. (2020). Using remote sensing and GIS in measuring vegetation cover change from satellite imagery in Mosul City, North of Iraq. IOP Conference Series: Materials Science and Engineering, 757. https://doi.org/10.1088/1757-899X/757/1/012062

  • Anchan, S. S., Shetty, A., Bhat, H. G., Chadaga, M. (2018). Land use and land cover change detection through spatial approach: A case study of Mangaluru Taluk, Karnataka. Journal of Geomatics 12, 167–73

  • Anwar Khalid, K. (2019). Using unsupervised classification to determined land cover northren of Ninvah provianec by using Remote sensing Techniques. Journal of Physics Conference Series, 1294https://doi.org/10.1088/1742-6596/1294/9/092037

  • Araya, Y. H., & Hergarten, C. (2008). A comparison of pixel and object-based land cover classification: A case study of the Asmara region, Eritrea. WIT Transactions on The Built Environment, 100, 233–243. https://doi.org/10.2495/GEO080231

    Article  Google Scholar 

  • Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini, L., et al. (2013). Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. Journal of Climate, 26, 6859–6881. https://doi.org/10.1175/JCLI-D-12-00623.1

    Article  Google Scholar 

  • Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18, 251–259. https://doi.org/10.1016/j.ejrs.2015.07.003

    Article  Google Scholar 

  • Chemura, A., Rwasoka, D., Mutanga, O., Dube, T., & Mushore, T. (2020). The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sensing Applications: Society and Environment, 18, 100292. https://doi.org/10.1016/j.rsase.2020.100292

    Article  Google Scholar 

  • Chen, X., Vierling, L., & Deering, D. (2005). A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98, 63–79. https://doi.org/10.1016/j.rse.2005.05.021

  • Chen, X., Yang, D., Chen, J., & Cao, X. (2015). An improved automated land cover updating approach by integrating with downscaled NDVI time series data. Remote Sensing Letters, 6, 29–38. https://doi.org/10.1080/2150704X.2014.998793

    Article  Google Scholar 

  • Choudhary, K., Boori, M. S., & Voz, V. (2015). Land use/cover disturbance due to tourism in Jesenı ’ ky Mountain , Czech Republic: A remote sensing and GIS based approach 17–26. https://doi.org/10.1016/j.ejrs.2014.12.002

  • Clerici, N., Paracchini, M. L., & Maes, J. (2014). Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrology & Hydrobiology, 14, 107–120. https://doi.org/10.1016/j.ecohyd.2014.01.002

    Article  Google Scholar 

  • Comission, E. (2018). Competence Centre on Foresight, Urbanisation worldwide [WWW Document]. URL https://knowledge4policy.ec.europa.eu/foresight/about_en (accessed 28 Nov 2021)

  • DeFries, R., Hansen, M., & Townshend, J. (1995). Global discrimination of land cover types from metrics derived from AVHRR pathfinder data. Remote Sensing of Environment, 54, 209–222. https://doi.org/10.1016/0034-4257(95)00142-5

    Article  Google Scholar 

  • Dewan, A., Kiselev, G., Botje, D., Mahmud, G. I., Bhuian, M. H., & Hassan, Q. K. (2021). Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustainable Cities and Society, 71, 102926. https://doi.org/10.1016/j.scs.2021.102926

    Article  Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29, 390–401. https://doi.org/10.1016/j.apgeog.2008.12.005

    Article  Google Scholar 

  • Fahad, S., Wajid, N. (2020). Evaluating the climate change impact on water use efficiency of cotton-wheat in semiarid conditions using DSSAT model. J Water Climate Change, 11(4), pp.1661-1675. https://doi.org/10.2166/wcc.2019.179/622035/jwc2019179

  • Ganasri, B. P., & Dwarakish, G. S. (2015). Study of land use/land cover dynamics through classification algorithms for Harangi Catchment Area, Karnataka State, India. Aquatic Procedia, 4, 1413–1420. https://doi.org/10.1016/j.aqpro.2015.02.183

    Article  Google Scholar 

  • Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., et al. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026

    Article  Google Scholar 

  • Gul, F., Ahmed, I., Ashfaq, M., Jan, D., Fahad, S., Li, X., Wang, D., Fahad, M., Fayyaz, M., & Shah, S. A. (2020). Use of crop growth model to simulate the impact of climate change on yield of various wheat cultivars under different agro-environmental conditions in Khyber Pakhtunkhwa , Pakistan.

  • Hassan, Z., Shabbir, R., Ahmad, S. S., Malik, A. H., Aziz, N., & Butt, A. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques : A case study of Islamabad Pakistan. Springerplus. https://doi.org/10.1186/s40064-016-2414-z

    Article  Google Scholar 

  • Hayat, H., Akbar, T.A., Tahir, A.A., Hassan, Q.K., Dewan, A. and Irshad, M., (2019). Simulating current and future river-flows in the Karakoram and Himalayan regions of Pakistan using snowmelt-runoff model and RCP scenarios. Water, 11(4) p.761. https://doi.org/10.3390/w11040761

  • Hussain, S., Mubeen, M., Akram, W., Ahmad, A., Habib-ur-Rahman, M., Ghaffar, A., Amin, A., Awais, M., Farid, H. U., Farooq, A., & Nasim, W. (2020). Study of land cover/land use changes using RS and GIS: a case study of Multan district, Pakistan. Environmental Monitoring and Assessment, 192. https://doi.org/10.1007/s10661-019-7959-1

  • Iqra, M., Amna, B., Shakeel, I., Fatima, K., Sehrish, L., Hamza, A., Fahad, S. (2020). Carbon Cycle in Response to Global Warming. in: Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, A.K., Adnan, M. (2020.),Environment, Climate, Plant and Vegetation Growth. Springer Publ Ltd, Springer Nature Switzerland AG. Part of Springer Nature. PP. 1-16. https://doi.org/10.1007/978-3-030-49732-3_1

  • Islam, K., Jashimuddin, M., Nath, B., & Kumar, T. (2018). The Egyptian Journal of Remote Sensing and Space Sciences Land use classification and change detection by using multi-temporal remotely sensed imagery : The case of Chunati wildlife sanctuary. The Egyptian Journal of Remote Sensing and Space Science, 21, 37–47. https://doi.org/10.1016/j.ejrs.2016.12.005

    Article  Google Scholar 

  • Kalra, K., Kumar Goswami, A., & Gupta, R. (2013). A comparative study of supervised image classification algorithms for satellite images. International Journal of Electrical, 1, 2320–2084.

    Google Scholar 

  • Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028

    Article  Google Scholar 

  • Li, M., Xu, Y., Fu, Q., Singh, V. P., Liu, D., & Li, T. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586https://doi.org/10.1016/j.jhydrol.2020.124888

  • Liang, C., Zhang, R. C., Zeng, J., & Shen, Z. J. (2021). A land-use decision approach integrating thermal regulation, stormwater management, and economic benefits based on urbanization stage identification. Science of the Total Environment, 779, 146415. https://doi.org/10.1016/j.scitotenv.2021.146415

    Article  CAS  Google Scholar 

  • Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25, 2365–2401. https://doi.org/10.1080/0143116031000139863

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870. https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  • Mashwani Z.R. (2020). Environment, climate change and biodiversity. Environment, climate, plant and vegetation growth. Springer Publ Ltd, Springer Nature Switzerland AG. Part of Springer Nature, pp.473-502. https://doi.org/10.1007/978-3-030-49732-3_19

  • Meneses-Tovar, C. L. (2011). NDVI as indicator of degradation. Unasylva, 62, 39–46.

    Google Scholar 

  • Milad, M., Ho, S., Firuz, M., & Ash, H. (2015). Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environmental Sciences, 30, 238–243. https://doi.org/10.1016/j.proenv.2015.10.043

    Article  Google Scholar 

  • Mohammed, E. A., Hani, Z. Y., & Kadhim, G. Q. (2018). Assessing land cover/use changes in Karbala city (Iraq) using GIS techniques and remote sensing data. Journal of Physics Conference Series, 1032. https://doi.org/10.1088/1742-6596/1032/1/012047

  • Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62, 275–293. https://doi.org/10.1016/0304-3800(92)90003-W

    Article  Google Scholar 

  • Mubeen, M., Ashfaq, A., Hafiz, M.H., Muhammad, A., Farid, U.H., Mazhar, S., Muhammad, S., Asad, A., Amjed, A., Fahad, S., Wajid, N. (2020). Evaluating the climate change impact on water use efficiency of cotton-wheat in semiarid conditions using DSSAT model. J Water Climate Change, 11(4), pp.1661-1675. https://doi.org/10.2166/wcc.2019.179/622035/jwc2019179

  • Nuñez, M. N., Ciapessoni, H. H., Rolla, A., Kalnay, E., & Cai, M. (2008). Impact of land use and precipitation changes on surface temperature trends in Argentina. Journal of Geophysical Research: Atmospheres, 113, 1–11. https://doi.org/10.1029/2007JD008638

    Article  Google Scholar 

  • Pal, S., & Ziaul, S. (2017). The Egyptian Journal of Remote Sensing and Space Sciences Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20, 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  • Patela, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., Tatem, A. J., & Trianni, G. (2015). Multitemporal settlement and population mapping from landsatusing google earth engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199–208. https://doi.org/10.1016/j.jag.2014.09.005

    Article  Google Scholar 

  • Quyen, N. T. N., Liem, N. D., & Loi, N. K. (2014). Effect of land use change on water discharge in Srepok watershed, Central Highland, Viet Nam. International Soil and Water Conservation Research, 2, 74–86. https://doi.org/10.1016/S2095-6339(15)30025-3

    Article  Google Scholar 

  • Rahman, M.H., Ahmad, A., Wajid, A., Hussain, M., Rasul, F., Ishaque, W., Islam, M.A., Shelia, V., Awais, M., Ullah, A. and Wahid, A., (2019). Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates: Evaluation in changing semi-arid climate. Field Crops Research, 238, pp.139-152. http://dx.doi.org/10.1016/j.fcr.2017.07.007

  • Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40, 689–697. https://doi.org/10.1007/s12524-011-0165-4

    Article  Google Scholar 

  • Rahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., Habumugisha, J. M., Washakh, R. M. A., Alam, M., Liu, E., Han, Z., Ni, H., Shufeng, T., & Dewan, A. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12, 101224. https://doi.org/10.1016/j.gsf.2021.101224

    Article  Google Scholar 

  • Ranagalage, M., Morimoto, T., & Simwanda, M. (2021). Spatial analysis of urbanization patterns in four rapidly growing South Asian cities using Sentinel-2 Data 1–25.

  • Rawat, J. S. (2015). Monitoring land use / cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18, 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002

    Article  Google Scholar 

  • Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 16, 111–117. https://doi.org/10.1016/j.ejrs.2013.04.002

    Article  Google Scholar 

  • Roy, P., Chandra Pal, S., Chakrabortty, R., Chowdhuri, I., Malik, S., & Das, B. (2020). Threats of climate and land use change on future flood susceptibility. Journal of Cleaner Production, 272, 122757. https://doi.org/10.1016/j.jclepro.2020.122757

    Article  Google Scholar 

  • Rujoiu-Mare, M. -R., & Mihai, B. -A. (2016). Mapping land cover using remote sensing data and GIS techniques: A case study of Prahova Subcarpathians. Procedia Environmental Sciences, 32, 244–255. https://doi.org/10.1016/j.proenv.2016.03.029

    Article  Google Scholar 

  • Sahebjalal, E., & Dashtekian, K. (2013). Analysis of land use-land covers changes using normalized difference vegetation index ( NDVI ) differencing and classification methods. African Journal of Agricultural Research, 8, 4614–4622. https://doi.org/10.5897/AJAR11.1825

  • Setiawan, Y., Rustiadi, E., Yoshino, K., Liyantono, E., & Effendi, H. (2014). Assessing the seasonal dynamics of the Java’s paddy field using MODIS Satellite Images. ISPRS International Journal of Geo-Information, 3, 110–129. https://doi.org/10.3390/ijgi3010110

  • Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., & Wang, Y. (2015). Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163, 326–340. https://doi.org/10.1016/j.rse.2015.03.031

    Article  Google Scholar 

  • Udin, W. S., & Zahuri, Z. N. (2017). Land use and land cover detection by different classification systems using remotely sensed data of Kuala Tiga, Tanah Merah Kelantan, Malaysia. Journal Tropology Resource Sustainable Science, 5, 145–151.

    Google Scholar 

  • Ullah, S., Tahir, A. A., Akbar, T. A., Hassan, Q. K., Dewan, A., Khan, A. J., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustain, 11. https://doi.org/10.3390/su11195492

  • Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., et al. (2016). Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 187, 14–29. https://doi.org/10.1016/j.rse.2016.10.001

    Article  Google Scholar 

  • Wahyunto, W., Supriatna, W., & Agus, F. (2013). Land use change and recommendation for sustainable development of peatland for agriculture: Case study at Kubu Raya and Pontianak Districts, West Kalimantan. Indones. Journal of Agricultural Science, 11, 32. https://doi.org/10.21082/ijas.v11n1.2010.p32-40

  • Wang, Q., Riemann, D., Vogt, S., & Glaser, R. (2014). Impacts of land cover changes on climate trends in Jiangxi province China. International Journal of Biometeorology, 58, 645–660. https://doi.org/10.1007/s00484-013-0645-z

    Article  Google Scholar 

  • Xiuwan, C. (2002). Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23, 107–124. https://doi.org/10.1080/01431160010007051

    Article  Google Scholar 

  • Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Science of the Total Environment, 793, 148559. https://doi.org/10.1016/j.scitotenv.2021.148559

    Article  CAS  Google Scholar 

  • Zaidi, S. M., Akbari, A., Samah, A. A., & Kong, N. S. (2017). Landsat-5 time series analysis for land use/land cover change detection using NDVI and semi-supervised classification techniques. Polish Journal of Environmental Studies, 26, 2833–2840. https://doi.org/10.15244/pjoes/68878

  • Zhao, Y., Ma, S., Fan, J., & Cai, Y. (2021). Examining the effects of land use on carbon emissions: Evidence from Pearl River Delta.

  • Zhou, X., & Chen, H. (2018). Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of the Total Environment, 635, 1467–1476. https://doi.org/10.1016/j.scitotenv.2018.04.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Firstly, I would like to express my sincere gratitude to Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan, for the constant support during this research. The study is possible due to the free satellite imagery provided by NASA GLCF and USGS. The authors are grateful to their authority.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maira Naeem or Hafiz Umar Farid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, M., Farid, H.U., Madni, M.A. et al. Remotely sensed image interpretation for assessment of land use land cover changes and settlement impact on allocated irrigation water in Multan, Pakistan. Environ Monit Assess 194, 98 (2022). https://doi.org/10.1007/s10661-021-09732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09732-5

Keywords

Navigation