Skip to main content

Sustenance of Himalayan springs in an emerging water crisis

Abstract

Springs are a significant source of high quality and perennial freshwater supply for remote communities and sustain rich biodiversity and ecosystems in the Himalayas. About 60–70% of the Himalayan population directly depends on springs to meet their domestic and livelihood needs. Despite that, decline in approximately 60% of low discharge springs have been reported in the last couple of decades. In addition, nitrates and faecal coliform contamination linked to septic tanks, open defecation, and fertiliser application have been reported. A high degree of urbanization with 500 growing townships and 8–10 large cities has further threatened the sustenance of these vital resources, causing a severe water crisis in the Himalayas. Spring rejuvenation can enhance water access and livelihoods and help achieve several sustainable development goals (SDGs). However, multiple challenges hinder the success of such initiatives. A fundamental limitation is the poor understanding of complex groundwater (spring) systems and their interactions with human societies. This review identified crucial knowledge gaps by synthesizing available knowledge on springs and revival efforts from peer-reviewed journals and reports by practitioners and governing bodies. The review also highlights the limitations of spring revival approaches and recommends future management options. There is a critical lack of comprehensive data as a large research on the Himalayan spring systems results from small-scale spring centric studies focussing primarily on hydrology. In contrast, the impacts of hydrogeology, ecology, socio-economics and developmental activities on springs are less explored. Lack of scientific inputs on the hydrogeological regime and limited support by the state is a barrier to scaling spring rejuvenation programs. Long term monitoring, location-specific mapping of local hydrogeological and socio-economic settings at aquifer scale and collaborations among different stakeholders are essential to facilitate holistic knowledge development on spring systems and successful spring revival. The authors recommend ensuring sustenance by recognizing the value of springs in the mainstream programs and policies and develop appropriate management framework for the management of spring systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • ACWADAM. (2011). Contours of spring water management in the Himalaya: Experiences gained from key partnerships. ACWADAM.

  • Adhikari, S., Gurung, A., Chauhan, R., Rijal, D., Dongol, B. S., Aryal, D., & Talchabhadel, R. (2020). Status of springs in mountain watershed of western Nepal. Water Policy, wp2020187. https://doi.org/10.2166/wp.2020.187

  • Agarwal, A., Bhatnaga, N. K., Nema, R. K., & Agrawal, N. K. (2012). Rainfall dependence of springs in the Midwestern Himalayan Hills of Uttarakhand. Mountain Research and Development, 32(4), 446–455. https://doi.org/10.1659/MRD-JOURNAL-D-12-00054.1

    Article  Google Scholar 

  • Allen, M. J., & Morrison, S. M. (1973). Bacterial Movement through Fractured Bedrock. Groundwater, 11(2), 6–10. https://doi.org/10.1111/j.1745-6584.1973.tb02960.x

    Article  Google Scholar 

  • Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., & Gloaguen, R. (2012). Impact of transient groundwater storage on the discharge of Himalayan rivers. Nature Geoscience, 5(2), 127–132. https://doi.org/10.1038/ngeo1356

    CAS  Article  Google Scholar 

  • Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M., & Blume, T. (2017). Form and function in hillslope hydrology: Characterization of subsurface flow based on response observations. Hydrology and Earth System Sciences, 21(7), 3727–3748. https://doi.org/10.5194/hess-21-3727-2017

    Article  Google Scholar 

  • Ansari, Md. A., Deodhar, A., Kumar, U. S., & Khatti, V. S. (2015). Water quality of few springs in outer Himalayas – A study on the groundwater–bedrock interactions and hydrochemical evolution. Groundwater for Sustainable Development, 1(1), 59–67. https://doi.org/10.1016/j.gsd.2016.01.002

    Article  Google Scholar 

  • Asoka, A., Wada, Y., Fishman, R., & Mishra, V. (2018). Strong linkage between precipitation intensity and monsoon season groundwater recharge in India. Geophysical Research Letters, 45(11), 5536–5544. https://doi.org/10.1029/2018GL078466

    Article  Google Scholar 

  • Barquín, J., & Scarsbrook, M. (2008). Management and conservation strategies for coldwater springs. Aquatic Conservation Marine and Freshwater Ecosystems. http://agris.fao.org/agris-search/search.do?recordID=US201300921155

  • Bartarya, S. K. (1993). Hydrochemistry and rock weathering in a sub-tropical Lesser Himalayan river basin in Kumaun, India. Journal of Hydrology, 146, 149–174. https://doi.org/10.1016/0022-1694(93)90274-D

    CAS  Article  Google Scholar 

  • Bartarya, S. K., Bhattacharya, S. K., Ramesh, R., & Somayajulu, B. L. K. (1995). Δ18O and δD systematics in the surficial waters of the Gaula river catchment area, Kumaun Himalaya, India. Journal of Hydrology, 167(1), 369–379. https://doi.org/10.1016/0022-1694(94)02634-N

    CAS  Article  Google Scholar 

  • Becker, M. W., Metge, D. W., Collins, S. A., Shapiro, A. M., & Harvey, R. W. (2003). Bacterial transport experiments in fractured crystalline bedrock. Groundwater, 41(5), 682–689. https://doi.org/10.1111/j.1745-6584.2003.tb02406.x

    CAS  Article  Google Scholar 

  • Bhat, N., Jeelani, G., & Bhat, M. (2014). Hydrogeochemical assessment of groundwater in karst environments Bringi watershed, Kashmir Himalayas, India. Current Science, 106, 1000–1007.

    CAS  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3). https://doi.org/10.1029/2009JF001426

  • Buono, J. (2019). Spring protection and management: Context, history and examples of spring management in India. In P. K. Sikdar (Ed.), Groundwater development and management: Issues and challenges in South Asia (pp. 227–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-75115-3_9

  • Buono, J., Sharma, S., Kumar, A., Mahamuni, K., Bisht, B., Adiraju, S., Shabong, L., & Kasturirangan, A. (2019). Spring protection and management: Some case histories from across India’s mountainous regions. In S. P. S. Ray (Ed.), Ground water development: Issues and sustainable solutions (pp. 329–337). Springer Singapore. https://doi.org/10.1007/978-981-13-1771-2_20

  • Cantonati, M., Segadelli, S., Ogata, K., Tran, H., Sanders, D., Gerecke, R., Rott, E., Filippini, M., Gargini, A., & Celico, F. (2016). A global review on ambient limestone-precipitating springs (LPS): Hydrogeological setting, ecology, and conservation. Science of the Total Environment, 568, 624–637. https://doi.org/10.1016/j.scitotenv.2016.02.105

    CAS  Article  Google Scholar 

  • Cantonati, M., Stevens, L. E., Segadelli, S., Springer, A. E., Goldscheider, N., Celico, F., Filippini, M., Ogata, K., & Gargini, A. (2020). Ecohydrogeology: The interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater-dependent habitats, biota, and ecosystems. Ecological Indicators, 110, 105803. https://doi.org/10.1016/j.ecolind.2019.105803

    Article  Google Scholar 

  • Chen, J., Tang, C., Sakura, Y., Yu, J., & Fukushima, Y. (2005). Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeology Journal, 13(3), 481–492. https://doi.org/10.1007/s10040-004-0321-9

    CAS  Article  Google Scholar 

  • Chinnasamy, P., & Prathapar, S. (2016). Methods to investigate the hydrology of the Himalayan springs: A review (No. 169). International Water Management Institute (IWMI). https://doi.org/10.5337/2016.205

  • Chopra, R. (2003). Survival lessons: Himalayan Jal Sanskriti. Peoples’ Science Institute (PSI). https://www.ircwash.org/sites/default/files/822-INHI03-18317.pdf

  • Conboy, M. J., & Goss, M. J. (2000). Natural protection of groundwater against bacteria of fecal origin. Journal of Contaminant Hydrology, 43(1), 1–24. https://doi.org/10.1016/S0169-7722(99)00100-X

    CAS  Article  Google Scholar 

  • Dhakal, D., Tiwari, A., Tambe, S., Sinha, U. K., & Arrawatia, M. L. (2014). Isotope studies to identify the origin and recharge area of Himalayan Springs as a climate change adaptation initiative: A case study from Sikkim, Eastern Himalaya. International Journal of Earth Sciences and Engineering, 7, 135–140.

    Google Scholar 

  • Doležal, F., & Kvı́tek, T. (2004). The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes. Physics and Chemistry of the Earth Parts a/b/c, 29(11), 775–785. https://doi.org/10.1016/j.pce.2004.05.005

    Article  Google Scholar 

  • Dosskey, M. G., Vidon, P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in Streams1. JAWRA Journal of the American Water Resources Association, 46(2), 261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x

    CAS  Article  Google Scholar 

  • Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology: Third edition. Waveland Press.

  • Ford, D., & Williams, P. D. (2007). Karst Hydrogeology and Geomorphology. Wiley.

    Book  Google Scholar 

  • Frisbee, M. D., Tysor, E. H., Stewart-Maddox, N. S., Tsinnajinnie, L. M., Wilson, J. L., Granger, D. E., & Newman, B. D. (2016). Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow springs streams and geomorphology. Geophysical Research Letters, 43(3), 1158–1165. https://doi.org/10.1002/2015GL067082

    Article  Google Scholar 

  • Ghimire, C. P., Lubczynski, M. W., Bruijnzeel, L. A., & Chavarro-Rincón, D. (2014). Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal. Agricultural and Forest Meteorology, 197, 76–90. https://doi.org/10.1016/j.agrformet.2014.05.012

    Article  Google Scholar 

  • Hamza, S. M., Ahsan, A., Imteaz, M. A., Ghazali, A. H., & Mohammed, T. A. (2017). GIS-based FRASTIC model for pollution vulnerability assessment of fractured-rock aquifer systems. Environmental Earth Sciences, 76(5), 197. https://doi.org/10.1007/s12665-017-6520-1

    CAS  Article  Google Scholar 

  • Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., & Baillie, J. E. M. (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364–369. https://doi.org/10.1038/s41586-019-1822-y

  • Jal Shakti. (2019). Spring rejuvenation framework. Ministry of Jal Shakti, DoWR, GoI. http://jalshakti-dowr.gov.in/sites/default/files/document-Spring.pdf

  • Jaunat, J., Huneau, F., Dupuy, A., Celle-Jeanton, H., Vergnaud-Ayraud, V., Aquilina, L., Labasque, T., & Le Coustumer, P. (2012). Hydrochemical data and groundwater dating to infer differential flowpaths through weathered profiles of a fractured aquifer. Applied Geochemistry, 27(10), 2053–2067. https://doi.org/10.1016/j.apgeochem.2012.06.009

    CAS  Article  Google Scholar 

  • Jeelani, G. (2008). Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeology Journal, 16(8), 1625–1633. https://doi.org/10.1007/s10040-008-0335-9

    CAS  Article  Google Scholar 

  • Jeelani, G., Bhat, N., Shivanna, K., & Bhat, M. Y. (2011). Geochemical characterization of surface water and spring water in SE Kashmir Valley, western Himalaya: Implications to water–rock interaction. Journal of Earth System Science, 120(5), 921–932. https://doi.org/10.1007/s12040-011-0107-0

    CAS  Article  Google Scholar 

  • Jeelani, G. H., Shah, R. A., & Hussain, A. (2014). Hydrogeochemical assessment of groundwater in Kashmir Valley India. Journal of Earth System Science, 123(5), 1031–1043. https://doi.org/10.1007/s12040-014-0446-8

    CAS  Article  Google Scholar 

  • Jeelani, G., Shah, R. A., & Deshpande, R. D. (2018). Assessment of groundwater in karst system of Kashmir Himalayas, India. In A. Mukherjee (Ed.), Groundwater of South Asia (pp. 85–100). Springer Singapore. https://doi.org/10.1007/978-981-10-3889-1_6

  • Jeelani, G., Shah, R. A., Deshpande, R. D., Fryar, A. E., Perrin, J., & Mukherjee, A. (2017). Distinguishing and estimating recharge to karst springs in snow and glacier dominated mountainous basins of the western Himalaya, India. Journal of Hydrology, 550, 239–252. https://doi.org/10.1016/j.jhydrol.2017.05.001

    CAS  Article  Google Scholar 

  • Jeelani, G. H., Bhat, N. A., & Shivanna, K. (2010). Use of δ18O tracer to identify stream and spring origins of a mountainous catchment: A case study from Liddar watershed Western Himalaya India. Journal of Hydrology, 393(3), 257–264. https://doi.org/10.1016/j.jhydrol.2010.08.021

    CAS  Article  Google Scholar 

  • Joshi, B. K. (2006). Hydrology and nutrient dynamics of spring of Almora-Binsar area, Indian Central Himalaya: Landscapes practices and management. Water Resources, 33(1), 87–96. https://doi.org/10.1134/S0097807806010106

    CAS  Article  Google Scholar 

  • Joshi, B. K., & Kothyari, B. P. (2003). Chemistry of perennial springs of Bhetagad watershed: A case study from central Himalayas India. Environmental Geology, 44(5), 572–578. https://doi.org/10.1007/s00254-003-0793-2

    CAS  Article  Google Scholar 

  • Kalhor, K., Ghasemizadeh, R., Rajic, L., & Alshawabkeh, A. (2019). Assessment of groundwater quality and remediation in karst aquifers: A review. Groundwater for Sustainable Development, 8, 104–121. https://doi.org/10.1016/j.gsd.2018.10.004

    Article  Google Scholar 

  • Kløve, B., Kvitsand, H. M. L., Pitkänen, T., Gunnarsdottir, M. J., Gaut, S., Gardarsson, S. M., Rossi, P. M., & Miettinen, I. (2017). Overview of groundwater sources and water-supply systems and associated microbial pollution in Finland Norway and Iceland. Hydrogeology Journal, 25(4), 1033–1044. https://doi.org/10.1007/s10040-017-1552-x

    Article  Google Scholar 

  • Kresic, N., & Stevanovic, Z. (2009). Groundwater hydrology of springs: Engineering, theory, management and sustainability. Butterworth-Heinemann.

    Google Scholar 

  • Kulkarni, H., Desai, J., & Siddique, M. I. (2021). Rejuvenation of Springs in the Himalayan Region. In Water, climate change, and sustainability (pp. 97–107). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119564522.ch6

  • Kulkarni, H., Shah, M., & Vijay Shankar, P. S. (2015). Shaping the contours of groundwater governance in India. Journal of Hydrology: Regional Studies, 4, 172–192. https://doi.org/10.1016/j.ejrh.2014.11.004

    Article  Google Scholar 

  • Kulkarni, H., & Shankar, P. S. V. (2014). Groundwater resources in India: An arena for diverse competition. Local Environment, 19(9), 990–1011. https://doi.org/10.1080/13549839.2014.964192

    Article  Google Scholar 

  • Kumar, U. S., Ansari, M. A., & Deodhar, A. (2014). Isotopic hydrologic and geomorphologic approach for the rejuvenation of few drying springs in mountainous region of Dhouli Rao and Kandela Himachal Pradesh India. Arabian Journal of Geosciences, 7(7), 2667–2677. https://doi.org/10.1007/s12517-013-0965-7

    CAS  Article  Google Scholar 

  • Kumar, K., Rawat, D. S., & Joshi, R. (1997). Chemistry of springwater in Almora Central Himalaya India. Environmental Geology, 31(3), 150–156. https://doi.org/10.1007/s002540050174

    CAS  Article  Google Scholar 

  • Kumar, P. (2020). Revival of springs to mitigate changing climate. IMI. https://www.mountaininitiative.in/images/publications/policy-briefs/Revival%20of%20Springs%20-%20IMI%20Policy%20Brief.pdf

  • Kumar, V., & Sen, S. (2018). Evaluation of spring discharge dynamics using recession curve analysis: A case study in data-scarce region Lesser Himalayas India. Sustainable Water Resources Management, 4(3), 539–557. https://doi.org/10.1007/s40899-017-0138-z

    Article  Google Scholar 

  • Levison, J. K., & Novakowski, K. S. (2012). Rapid transport from the surface to wells in fractured rock: A unique infiltration tracer experiment. Journal of Contaminant Hydrology, 131(1), 29–38. https://doi.org/10.1016/j.jconhyd.2012.01.001

    CAS  Article  Google Scholar 

  • Lone, S. A., Bhat, S. U., Hamid, A., Bhat, F. A., & Kumar, A. (2021). Quality assessment of springs for drinking water in the Himalaya of South Kashmir India. Environmental Science and Pollution Research, 28(2), 2279–2300. https://doi.org/10.1007/s11356-020-10513-9

    CAS  Article  Google Scholar 

  • Lu, C., Yu, G., & Xie, G. (2005). Tibetan Plateau serves as a water tower. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., 5, 3120–3123. https://doi.org/10.1109/IGARSS.2005.1526498

  • Mahamuni, K., & Upasani, D. (2011). Springs: A common source of a common resource. 14.

  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., & Zhou, B. (Eds.). (2021). Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.

  • Matheswaran, K., Khadka, A., Dhaubanjar, S., Bharati, L., Kumar, S., & Shrestha, S. (2019). Delineation of spring recharge zones using environmental isotopes to support climate-resilient interventions in two mountainous catchments in Far-Western Nepal. Hydrogeology Journal. https://doi.org/10.1007/s10040-019-01973-6

    Article  Google Scholar 

  • Mukherji, A., Molden, D., Nepal, S., Rasul, G., & Wagnon, P. (2015). Himalayan waters at the crossroads: Issues and challenges. International Journal of Water Resources Development, 31(2), 151–160. https://doi.org/10.1080/07900627.2015.1040871

    Article  Google Scholar 

  • Narain, V., & Singh, A. K. (2019). Replacement or displacement? Periurbanisation and changing water access in the Kumaon Himalaya India. Land Use Policy, 82, 130–137. https://doi.org/10.1016/j.landusepol.2018.12.004

    Article  Google Scholar 

  • Negi, G. C. S., & Joshi, V. (2002). Drinking water issues and development of spring sanctuaries in a mountain watershed in the Indian Himalaya. Mountain Research and Development, 22(1), 29–31. https://doi.org/10.1659/0276-4741(2002)022[0029:DWIADO]2.0.CO;2

    Article  Google Scholar 

  • Negi, G. C. S., & Joshi, V. (2004). Rainfall and spring discharge patterns in two small drainage catchments in the Western Himalayan Mountains India. The Environmentalist, 24(1), 19–28. https://doi.org/10.1023/B:ENVR.0000046343.45118.78

    Article  Google Scholar 

  • Negi, G. C. S., & Joshi, V. (2010). Geo-hydrological studies for augmentation of spring discharge in the Western Himalaya. Ministry of Water Resources (MoWR). http://cgwb.gov.in/INCGW/GC%20Negi%20Report.pdf

  • Negi, G. C. S., Kumar, K., Joshi, V., Panda, Y. S., & Satyal, G. S. (2001). Water Yield and Water Quality of Some Aquifers in the Himalaya., 27, 55–59.

    Google Scholar 

  • NITI Aayog. (2018a). Report of Working Group II - Sustainable Tourism in the Indian Himalayan Region. NITI Aayog India.

  • NITI Aayog. (2018b). Report of Working Group I - Inventory and revival of springs in the Himalayas for water security. NITI Aayog India.

  • Panwar, S. (2020). Vulnerability of Himalayan springs to climate change and anthropogenic impact: A review. Journal of Mountain Science. https://doi.org/10.1007/s11629-018-5308-4

    Article  Google Scholar 

  • Poudel, D. D., & Duex, T. W. (2017). Vanishing springs in Nepalese mountains: Assessment of water sources farmers’ perceptions and climate change adaptation. Mountain Research and Development, 37(1), 35–46. https://doi.org/10.1659/MRD-JOURNAL-D-16-00039.1

    Article  Google Scholar 

  • Qiu, J. (2008). China: The third pole. Nature, 454(7203), 393–396. https://doi.org/10.1038/454393a

    CAS  Article  Google Scholar 

  • Rai, S. P., Singh, D., Rai, A. K., & Kumar, B. (2017). Application of environmental isotopes and hydrochemistry in the identification of source of seepage and likely connection with lake water in Lesser Himalaya Uttarakhand India. Journal of Earth System Science, 126(8), 118. https://doi.org/10.1007/s12040-017-0889-9

    CAS  Article  Google Scholar 

  • Rani, M., Joshi, H., Kumar, K., Bhatt, D. K., & Kumar, P. (2021). Climate change scenario of hydro-chemical analysis and mapping spatio-temporal changes in water chemistry of water springs in Kumaun Himalaya. Environment, Development and Sustainability, 23(3), 4659–4674. https://doi.org/10.1007/s10668-020-00793-z

    Article  Google Scholar 

  • Rani, M., Joshi, H., Kumar, K., & Tiwari, A. (2019). Recharge potential mapping in complex hydrological system of Kosi Basin in the Mid-Himalayan Region. In P. Kumar, M. Rani, P. Chandra Pandey, H. Sajjad, & B. S. Chaudhary (Eds.), Applications and challenges of geospatial technology: Potential and future trends (pp. 9–23). Springer International Publishing. https://doi.org/10.1007/978-3-319-99882-4_2

  • Rawat, J. S., Govind, A., Rawat, G., Joshi, M., Rai, S. P., & Gahlot, N. (2016). Perennial to ephemeral transformation of a lesser Himalayan watershed. Current Science, 111(4), 686. https://doi.org/10.18520/cs/v111/i4/686-693

  • Robins, N. S., Chilton, P. J., & Cobbing, J. E. (2007). Adapting existing experience with aquifer vulnerability and groundwater protection for Africa. Journal of African Earth Sciences, 47(1), 30–38. https://doi.org/10.1016/j.jafrearsci.2006.10.003

    Article  Google Scholar 

  • Shah, R. A., & Jeelani, G. (2016). Vulnerability of karst aquifer to contamination: A case study of Liddar catchment, Kashmir Himalayas. Journal of Social Ecology and Sustainable Development, 11, 58–69.

    Google Scholar 

  • Shah, R. A., Jeelani, G., & Jacob, N. (2017). Estimating mean residence time of karst groundwater in mountainous catchments of Western Himalaya India. Hydrological Sciences Journal, 62(8), 1230–1242. https://doi.org/10.1080/02626667.2017.1313420

    CAS  Article  Google Scholar 

  • Shah, R., & Badiger, S. (2018). Conundrum or paradox: Deconstructing the spurious case of water scarcity in the Himalayan Region through an institutional economics narrative. Water Policy, 22(S1), 146–161. https://doi.org/10.2166/wp.2018.115

    Article  Google Scholar 

  • Shankar, P., Kulkarni, H., & Krishnan, S. (2011). India’s groundwater challenge and the way forward. Economic and Political Weekly, 46(2), 37–45.

    Google Scholar 

  • Shivanna, K., Tirumalesh, K., Noble, J., Joseph, T. B., Singh, G., Joshi, A. P., & Khati, V. S. (2008). Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucherarea Chamoli District Uttarakhand. Current Science, 94(8), 1003–1011.

    CAS  Google Scholar 

  • Shrestha, A. B., Agrawal, N. K., Alfthan, B., Bajracharya, S. R., Maréchal, J., & van Oort, B. (2015). The Himalayan Climate and Water Atlas: Impact of climate change on water resources in five of Asia’s major river basins. The Himalayan Climate and Water Atlas: Impact of climate change on water resources in five of Asia’s Major River Basins. https://www.cabdirect.org/cabdirect/abstract/20163337389

  • Shrestha, R. B., Desai, J., Mukherji, A., Dhakal, M., Kulkarni, H., Mahamuni, K., Bhuchar, S., & Bajracharya, S. (2018). Protocol for reviving springs in the Hindu Kush Himalayas: A practitioner’s manual. International Centre for Integrated Mountain Development (ICIMOD).

  • Shrestha, U. B., Gautam, S., Bawa, K. S., & Bohrer, G. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One, 7(5), e36741. https://doi.org/10.1371/journal.pone.0036741

    CAS  Article  Google Scholar 

  • Shukla, T., & Sen, I. S. (2021). Preparing for floods on the Third Pole. Science. https://doi.org/10.1126/science.abh3558

    Article  Google Scholar 

  • Siddique, M. I., Desai, J., Kulkarni, H., & Mahamuni, K. (2019). Comprehensive report on springs in the Indian Himalayan Region. ACWADAM. https://doi.org/10.13140/RG.2.2.12104.06408

  • Singh, A. K., & Pande, R. K. (1989). Changes in spring activity: Experiences of Kumaun Himalaya India. The Environmentalist, 9(1), 25–29. https://doi.org/10.1007/BF02242478

    Article  Google Scholar 

  • Springer, A. E., & Stevens, L. E. (2008). Spheres of discharge of springs. Hydrogeology Journal, 17(1), 83. https://doi.org/10.1007/s10040-008-0341-y

    Article  Google Scholar 

  • Springer, A. E., Stevens, L. E., Ledbetter, J. D., Schaller, E. M., Gill, K. M., & Rood, S. B. (2015). Ecohydrology and stewardship of Alberta springs ecosystems. Ecohydrology, 8(5), 896–910. https://doi.org/10.1002/eco.1596

    Article  Google Scholar 

  • Stevens, L. E., Springer, A. E., & Ledbetter, J. D. (2016). Springs ecosystem inventory protocols. Springs Stewardship Institute, 60.

  • Taloor, A. K., Pir, R. A., Adimalla, N., Ali, S., Manhas, D. S., Roy, S., & Singh, A. K. (2020). Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index(WQI). Groundwater for Sustainable Development, 10, 100364. https://doi.org/10.1016/j.gsd.2020.100364

    Article  Google Scholar 

  • Tambe, S., Dhakal, S., Dhakal, D., Sharma, G., Sherpa, P. N., Kulkarni, H., Bhutia, N. T., Dhakal, D., Pradhan, S., Sinha, U. K., Tiwari, A., Kharel, G., Phukan, I., & Arrawatia, M. L. (2020a). Scaling up spring revival in the Himalaya: Graduating from spring-centric to aquifer-centric nature-based solutions. In S. Dhyani, A. K. Gupta, & M. Karki (Eds.), Nature-based solutions for resilient ecosystems and societies (pp. 29–50). Springer. https://doi.org/10.1007/978-981-15-4712-6_2

  • Tambe, S., Kharel, G., Arrawatia, M. L., Kulkarni, H., Mahamuni, K., & Ganeriwala, A. K. (2012). Reviving dying springs: Climate change adaptation experiments from the Sikkim Himalaya. Mountain Research and Development, 32(1), 62–72. https://doi.org/10.1659/MRD-JOURNAL-D-11-00079.1

    Article  Google Scholar 

  • Tambe, S., Rawat, G. S., Bhutia, N. T., Sherpa, P. N., Dhakal, S., Pradhan, S., Kulkarni, H., & Arrawatia, M. L. (2020b). Building sustainability in the Eastern Himalaya: linking evidence to action. Environment Development and Sustainability, 22(6), 5887–5903. https://doi.org/10.1007/s10668-019-00456-8

    Article  Google Scholar 

  • Tarafdar, S. (2013). Understanding the dynamics of high and low spring flow: A key to managing the water resources in a small urbanized hillslope of Lesser Himalaya India. Environmental Earth Sciences, 70(5), 2107–2114. https://doi.org/10.1007/s12665-011-1493-y

    Article  Google Scholar 

  • Tarafdar, S., Bruijnzeel, L. A., & Kumar, B. (2019). Improved understanding of spring and stream water responses in headwaters of the Indian Lesser Himalaya using stable isotopes conductivity and temperature as tracers. Hydrological Sciences Journal, 64(7), 757–770. https://doi.org/10.1080/02626667.2019.1600698

    CAS  Article  Google Scholar 

  • Thakur, N., Rishi, M., Keesari, T., Sharma, D. A., & Sinha, U. K. (2020). Assessment of recharge source to springs in upper Beas basin of Kullu region, Himachal Pradesh India using isotopic signatures. Journal of Radioanalytical and Nuclear Chemistry, 323(3), 1217–1225. https://doi.org/10.1007/s10967-019-06617-3

    CAS  Article  Google Scholar 

  • Thakur, N., Rishi, M., Sharma, D. A., & Keesari, T. (2018). Quality of water resources in Kullu Valley in Himachal Himalayas, India: Perspective and prognosis. Applied Water Science, 8(1), 20. https://doi.org/10.1007/s13201-018-0668-z

    CAS  Article  Google Scholar 

  • Thapa, B., Pant, R. R., Thakuri, S., & Pond, G. (2020). Assessment of spring water quality in Jhimruk River Watershed, Lesser Himalaya, Nepal. Environmental Earth Sciences, 79(22), 504. https://doi.org/10.1007/s12665-020-09252-4

    CAS  Article  Google Scholar 

  • Tiwari, A. (2012). Water quality and quantity analysis in Sikkim, North Eastern Himalaya. Current Science, 103(1), 41–45, 24084939.

  • Tiwari, P. C., & Joshi, B. (2012). Environmental changes and sustainable development of water resources in the Himalayan Headwaters of India. Water Resources Management, 26(4), 883–907. https://doi.org/10.1007/s11269-011-9825-y

    Article  Google Scholar 

  • Tiwari, P. C., & Joshi, B. (2014). Environmental changes and their impact on rural water, food, livelihood, and health security in Kumaon Himalayas. Journal of Urban and Regional Studies on Contemporary India, 12.

  • Tiwari, P. C., Tiwari, A., & Joshi, B. (2018). Urban growth in Himalaya: Understanding the process and options for sustainable development. Journal of Urban and Regional Studies on Contemporary India, 13.

  • Valdiya, K. S., & Bartarya, S. K. (1989). Diminishing discharges of mountain springs in a part of Kumaun Himalaya. Current Science, 58, 417–426.

    Google Scholar 

  • Valdiya, K. S., & Bartarya, S. K. (1991). Hydrogeological studies of springs in the catchment of the Gaula River Kumaun Lesser Himalaya India. Mountain Research and Development, 11(3), 239–258. https://doi.org/10.2307/3673618

    Article  Google Scholar 

  • Vashisht, A. K., & Sharma, H. C. (2007). Study on hydrological behaviour of a natural spring. Current Science, 93(6), 837–840.

    Google Scholar 

  • Verbovšek, T., & Kanduč, T. (2016). Isotope geochemistry of groundwater from fractured dolomite aquifers in Central Slovenia. Aquatic Geochemistry, 22(2), 131–151. https://doi.org/10.1007/s10498-015-9281-z

    CAS  Article  Google Scholar 

  • Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (Eds.). (2019). The Hindu Kush Himalaya assessment: Mountains climate change sustainability and people. Springer International Publishing. https://doi.org/10.1007/978-3-319-92288-1

Download references

Acknowledgements

We are grateful for the institutional support provided by the Ashoka Trust for Research in Ecology and the Environment (ATREE) and by the Manipal Academy of Higher Education (MAHE). We would like to thank Dr Jagdish Krishnaswamy (Senior Fellow, Ashoka Trust for Research in Ecology and the Environment (ATREE), Dr Sumit Sen (Associate Professor, Indian Institute of Technology-Roorkee (IIT-R)) and Dr Himanshu Kulkarni (Executive Director, Advanced Center for Water Resources Development and Management (ACWADAM)) for the valuable discussions and suggestions for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Jamwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Jamwal, P. Sustenance of Himalayan springs in an emerging water crisis. Environ Monit Assess 194, 87 (2022). https://doi.org/10.1007/s10661-021-09731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09731-6

Keywords

  • Hydrogeology
  • Hydrology
  • Indian Himalayan region
  • Mountains
  • Springs
  • Spring ecosystems
  • Springshed management
  • Sustenance
  • Water resources