Skip to main content
Log in

Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Cite this article


Coal thermal power plants are the dominant factor in producing various hazardous elements in surrounding surface soil, resulting in a significant human health hazard. In the current study, the seasonal (pre- and post-monsoon) concentration of As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, and Zn in surface soil around coal power production unit was analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The possible health risks throughout multiple exposure routes, i.e., ingestion, dermal, and inhalation were estimated for adult and children. Furthermore, geo-accumulation index (Igeo), enrichment factor (EF), pollution factor (CF), ecological risk index, and pollution load index (PLI) were applied to interpret the environmental pollution in the study area. The geospatial distribution pattern was computed to understand the trace and hazardous element distribution in the surface soil. As a result, the concentration of Fe (mg/kg) in pre-monsoon (15,620) and post-monsoon (27,180), Ni (mg/kg) in pre-monsoon (19.8), and post-monsoon (81.7) was found above the standard limits of soil prescribed by the WHO and FAO. Enrichment factor was observed between 0.95–6948 (pre-monsoon) and 0.53–116.09 (post-monsoon). The ecological risk index was found moderate to considerable for As and Cd metals during both seasons. In addition, the average PLI value was observed high for both seasons indicating the contamination of the study area with heavy metals. Moreover, Igeo values for Fe, Mg, and As were found relatively high. Conversely, health risks to the human population were found within the USEPA acceptable limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

Code availability

Not applicable.


  • Adimalla, N. (2020). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75.

    Article  CAS  Google Scholar 

  • Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219–223.

  • Alloway, B. J. (2013). Heavy metals and metalloids as micronutrients for plants and animals. In Heavy metals in soils (pp. 195-209). Dordrecht: Springer.

  • An, Y. L. (2017). Environmental behavior of the whole life cycle of coal and their effects on land resources. Jiansgsu: China University of Mining and Technology.

  • Baba, A., Gurdal, G., & Sengunalp, F. (2010). Leaching characteristics of fly ash from fluidized bed combustion thermal power plant: case study: Çan (Çanakkale-Turkey). Fuel Processing Technology, 91(9), 1073–1080.

    Article  CAS  Google Scholar 

  • Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province. Turkey. Chemosphere, 241, 125015.

    Article  CAS  Google Scholar 

  • Bo, L., Wang, D., Li, T., Li, Y., Zhang, G., Wang, C., & Zhang, S. (2015). Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region, China. Environmental Science and Pollution Research, 22(9), 6721–6731.

    Article  CAS  Google Scholar 

  • Bogdanovi´c, D. (2007). Sources of nickel contamination in soil. In Letopis Nauˇcnih Radova (Yearbook of Scientific Papers); University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, pp. 21–28

  • Brigden, K., & Santillo, D. (2002). Heavy metal and metalloid content of fly ash collected from the Sual, Mauban and Masinloc coal-fired power plants in the Philippines, 2002. Greenpeace Araştırma Laboratuarı Teknik Notu, 7, 2002.

    Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., ... & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

    Article  CAS  Google Scholar 

  • Central Ground Water Board Report Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India.

  • Chabukdhara, M., & Nema, A. K. (2013). Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicology and Environmental Safety, 87, 57–64.

    Article  CAS  Google Scholar 

  • Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.

    Article  CAS  Google Scholar 

  • Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440.

  • Chen, J. Q., Peng, K. L., & Liu, K. J. (1998). The relationship between metal mine dust and cancer (prospective epidemiological survey of metal mine for 15 years). WUHAN Mde J, 3, 148–152.

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere60(4), 542–551.

  • CNEMC, C. (1990). The background concentrations of soil elements of China. China Environmental Science Press.

    Google Scholar 

  • Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2017). Reprint of “Environmental assessment of heavy metals around the largest coal fired power plant in Serbia.” CATENA, 148, 26–34.

    Article  CAS  Google Scholar 

  • Das, S. K., & Chakrapani, G. J. (2011). Assessment of trace metal toxicity in soils of Raniganj Coalfield. Environmental Monitoring and Assessment, 177(1), 63–71.

    Article  CAS  Google Scholar 

  • Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., & Onjia, A. (2013). Trace element distribution in surface soils from a coal burning power production area: A case study from the largest power plant site in Serbia. CATENA, 104, 288–296.

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Processing Technology, 39(1–3), 21–34.

    Article  CAS  Google Scholar 

  • George, J., Masto, R. E., Ram, L. C., Das, T. B., Rout, T. K., & Mohan, M. (2015). Human exposure risks for metals in soil near a coal-fired power-generating plant. Archives of Environmental Contamination and Toxicology, 68(3), 451–461.

  • Ghrefat, H., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65(11), 2114–2121.

    Article  CAS  Google Scholar 

  • Guideline, E. S. A. (2009). DB11/T656–2009. Beijing Municipal Administration of Quality and Technology Supervision: Beijing, China.

  • Gune, M. M., Harshavardhana, B. G., Ma, W. L., Balakrishna, K., Udayashankar, H. N., Zhang, Z., & Li, Y. F. (2020). Seasonal variations of heavy metals in the soil around a coal-fired thermal power plant, south-west coast of India. Bulletin of Environmental Contamination & Toxicology, 104(5).

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Islam, S., Ahmed, K., & Masunaga, S. (2015). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512, 94–102.

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60.

  • Javed, M., Ahmad, I., Usmani, N., & Ahmad, M. (2016). Studies on biomarkers of oxidative stress and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere, 151, 210–219.

  • Kabata-Pendias. (2011). Trace elements in soils and Plants (4th ed.). Londres: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Keegan, T. J., Farago, M. E., Thornton, I., Hong, B., Colvile, R. N., Pesch, B., ... & Nieuwenhuijsen, M. J. (2006). Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Science of the Total Environment, 358(1–3), 61–71.

  • Krishna, A. K., & Mohan, K. R. (2016). Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Sciences, 75(5), 411.

  • Kolo, M. T., Khandaker, M. U., Amin, Y. M., Abdullah, W. H. B., Bradley, D. A., & Alzimami, K. S. (2018). Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fired cement factory in Nigeria. Results in Physics, 11, 755–762.

  • Kumar, A., Kumar, M., Pandey, R., ZhiGuo, Y., & Cabral-Pinto, M. (2021). Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. Catena, 207, 105667.

  • Kumar, V., Sharma, A., Minakshi, Bhardwaj, R., & Thukral, A. K. (2018). Temporal distribution, source apportionment, and pollution assessment of metals in the sediments of Beas river, India. Human and Ecological Risk Assessment: An International Journal, 24(8), 2162–2181.

    Article  CAS  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165, 454–464.

  • Lee, S. W., Lee, B. T., Kim, J. Y., Kim, K. W., & Lee, J. S. (2006). Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environmental Monitoring and Assessment, 119(1), 233–244.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of the Total Environment, 633, 206–219.

  • Lv, Y., Liu, J., Yang, T., & Zeng, D. (2013). A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler. Energy, 55, 319–329.

    Article  CAS  Google Scholar 

  • Madrid, L., Dı́az-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49(10), 1301–1308.

  • Mamut, A., Eziz, M., Mohammad, A., & Anayit, M. (2017). The spatial distribution, contamination, and ecological risk assessment of heavy metals of farmland soils in Karashahar-Baghrash oasis, northwest China. Human and Ecological Risk Assessment: An International Journal, 23(6), 1300–1314.

    Article  CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3), 409–420.

    Article  CAS  Google Scholar 

  • Marcinkonis, S., Baltrenaite, E., & Lazauskas, S. (2011). Extraction and mapping of soil factors using factor analysis and geostatistical analysis on intensively manured heterogenous soils. Polish Journal of Environmental Studies, 20(3), 701–708.

  • Mehra, A., Farago, M. E., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50(1), 15–35.

    Article  CAS  Google Scholar 

  • Mihailovi´c, A. Physical properties of soil and the distribution of heavy metals in the city area of Novi Sad. Ph.D. Thesis, Faculty of Natural Sciences and Mathematics, University of Novi Sad, Novi Sad, Serbia, 2015.

  • Mikkonen, H. G., Dasika, R., Drake, J. A., Wallis, C. J., Clarke, B. O., & Reichman, S. M. (2018). Evaluation of environmental and anthropogenic influences on ambient background metal and metalloid concentrations in soil. Science of the Total Environment, 624, 599–610.

    Article  CAS  Google Scholar 

  • Mittal, S., Sahoo, P. K., Sahoo, S. K., Kumar, R., & Tiwari, R. P. (2021). Hydrochemical characteristics and human health risk assessment of groundwater in the Shivalik region of Sutlej basin, Punjab. India. Arabian Journal of Geosciences, 14(10), 1–18.

    Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Nabulo, G., Black, C. R., Craigon, J., & Young, S. D. (2012). Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environmental Pollution, 162, 389–398.

    Article  CAS  Google Scholar 

  • Navas, A., & Machı́n, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragon (northeast Spain): Controlling factors and environmental implications. Applied Geochemistry, 17(8), 961–973.

    Article  CAS  Google Scholar 

  • Nezhad, M. T. K., Tabatabaii, S. M., & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz. Iran. Journal of Geochemical Exploration, 152, 91–109.

    Article  CAS  Google Scholar 

  • Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martínez-Cortizas, A., & Gayoso, E. G. R. (2008). Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Science of the Total Environment, 394(2–3), 303–312.

    Article  CAS  Google Scholar 

  • Okedeyi, O. O., Dube, S., Awofolu, O. R., & Nindi, M. M. (2014). Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environmental Science and Pollution Research, 21(6), 4686–4696.

  • Oluwatuyi, O. E., Ajibade, F. O., Ajibade, T. F., Adelodun, B., Olowoselu, A. S., Adewumi, J. R., & Akinbile, C. O. (2020). Total concentration, contamination status and distribution of elements in a Nigerian State dumpsites soil. Environmental and Sustainability Indicators, 5, 100021.

  • Omwene, P. I., Öncel, M. S., Çelen, M., & Kobya, M. (2018). Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere, 208, 782–792.

  • Ouyang, Y., Higman, J., Thompson, J., O'Toole, T., & Campbell, D. (2002). Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin. Journal of Contaminant Hydrology, 54(1–2), 19–35.

  • Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188(5), 284.

  • Padmanabhamurty, B., & Gupta, R. N. (1977). Particulate pollution in Delhi due to Indraprastha power plant. MAUSAM, 28(3), 375–384.

    Article  CAS  Google Scholar 

  • Popovic, A., Djordjevic, D., & Polic, P. (2001). Trace and major element pollution originating from coal ash suspension and transport processes. Environment International, 26(4), 251–255.

    Article  CAS  Google Scholar 

  • Poveromo, J. J., & SwANSON, A. W. (1999). Iron-bearing raw materials for direct reduction. Direct Reduced Iron: Technology and Economics of Production and Use. Iron and Steel Society/AIME, 410 Commonwealth Dr, P.O. Box 411, Warrendale, PA 15086–7512, 1999, 59–79.

    Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

  • Rehman, Z. U., Khan, S., Brusseau, M. L., & Shah, M. T. (2017). Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere, 168, 1589–1596.

    Article  CAS  Google Scholar 

  • Rodriguez-Iruretagoiena, A., de Vallejuelo, S. F. O., Gredilla, A., Ramos, C. G., Oliveira, M. L., Arana, G., & Silva, L. F. (2015). Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Science of the Total Environment, 508, 374–382.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Guimaraes, J. T. F., Souza-Filho, P. W. M., da Silva, M. S., Maurity, C. W., Powell, M. A., ... & Dall’Agnol, R. (2016). Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: implications for catchment weathering, provenance, and sedimentary processes. Journal of South American Earth Sciences, 72, 178–190.

    Article  CAS  Google Scholar 

  • Sharma, S., Nagpal, A. K., & Kaur, I. (2018). Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chemistry, 255, 15–22.

    Article  CAS  Google Scholar 

  • Sharma, S., Nagpal, A. K., & Kaur, I. (2019). Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere, 227, 179–190.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., & Teng, J. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156(2), 251–260.

  • Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31(4), 421–430.

  • Smith, I. W. (1995). The reaction of coal at high intensities in combustion and gasification systems. Hong Kong: Hong Kong Polytechnic University, Kowloon.

  • Smołka-Danielowska, D. (2006). Heavy metals in fly ash from a coal-fired power station in Poland. Polish Journal of Environmental Studies, 15(6).

  • Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Science of the Total Environment, 204(2), 135–146.

    Article  CAS  Google Scholar 

  • Sun, L., Guo, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., & Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena, 175, 101–109.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of hazardous materials, 174(1–3), 455–462.

    Article  CAS  Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., Zhang, H., & Sun, R. (2013). Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: potential risks to ecology and children’s health. Chemosphere, 93(10), 2473–2479.

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica Et Cosmochimica Acta, 28(8), 1273–1285.

    Article  CAS  Google Scholar 

  • Tholkappian, M., Ravisankar, R., Chandrasekaran, A., Jebakumar, J. P. P., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2018). Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using energy dispersive X-ray fluorescence spectroscopy (EDXRF) with statistical approach. Toxicology Reports, 5, 173–182.

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33(1–4), 566–575.

  • Tsikritzis, L. I., Ganatsios, S. S., Duliu, O. G., Kavouridis, C. V., & Sawidis, T. D. (2002). Trace elements distribution in soil in areas of lignite power plants of Western Macedonia. Journal of Trace and Microprobe Techniques, 20(2), 269–282.

    Article  CAS  Google Scholar 

  • Turhan, Ş, Garad, A. M. K., Hançerlioğulları, A., Kurnaz, A., Gören, E., Duran, C., & Aydın, A. (2020). Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey. Environmental Earth Sciences, 79(6), 1–15.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency, (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Superfund Remediation and TechnologyInnovation, Washington, D.C.

  • Uren, N. C. (1992). Forms, reactions, and availability of nickel in soils. Advances in Agronomy, 48, 141–203.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency), (1993). Reference Dose (RfD): description and use in health risk assessments. Background Document 1A. Integrated risk information system (IRIS).

  • USEPA (US Environmental Protection Agency). (2001). Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4–24. Office of Solid Waste and Emergency Response. US Environmental Protection Agency.Washington (DC).

  • USEPA (US Environmental Protection Agency). (1990). National Oil and Hazardous Substances Pollution Contingency Plan,40 CRF Part 300. US Environmental Protection Agency, Washington (DC).

  • USEPA (US Environmental Protection Agency). (1991a). Risk assessment guidance for superfund. Human Health Evaluation Manual. Part B. Development of risk-based preliminary remediation goals (Interim), PB92–963333. Publication 9285.7–01B, vol. I. Office of Emergency and Remedial Response, US.

  • USEPA, (US Environmental Protection Agency), (1991b). Role of the baseline risk assessment in superfund remedy selection decisions. Office of Solid Waste and Emergency Response. OSWER Directive 9355.0–30.

  • Virk, P., Ghosh, N., & Singh, K. P. (2010). Some trace elements investigation in groundwater around industrial belt of Ropar block, Rupnagar district, Punjab. I Control Pollution.

    Google Scholar 

  • Wang, G., Liu, H. Q., Gong, Y., Wei, Y., Miao, A. J., Yang, L. Y., & Zhong, H. (2017). Risk assessment of metals in urban soils from a typical industrial city, Suzhou, Eastern China. International Journal of Environmental Research and Public Health, 14(9), 1025.

  • Wang, Y., Duan, X., & Wang, L. (2020). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Science of the Total Environment, 710, 134953.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., ... & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

  • Wu, W., Wu, P., Yang, F., Sun, D. L., Zhang, D. X., & Zhou, Y. K. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53–61.

  • Xu, S., Liu, L. L., & Sayer, E. J. (2013). Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences, 10(11), 7423–7433.

    Article  Google Scholar 

  • Yan, R., Gauthier, D., & Flamant, G. (2000). Possible interactions between As, Se, and Hg during coal combustion. Combustion and Flame, 120(1–2), 49–60.

    Article  CAS  Google Scholar 

  • Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108(1), 27–38.

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental pollution, 159(10), 2575–2585.

    Article  CAS  Google Scholar 

  • Zhang, K., Zheng, X., Li, H., & Zhao, Z. (2020). Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical Plant in Northwest China. Soil and Sediment Contamination: An International Journal, 29(5), 481–502.

  • Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., ... & Chen, W. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine pollution bulletin, 54(7), 974–982.

  • Zhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 417, 45–54.

  • Zhao, L., Xu, Y., Hou, H., Shangguan, Y., & Li, F. (2014). Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Science of the Total Environment, 468, 654–662.

  • Zheng, N., Wang, Q., Zhang, X., Zheng, D., Zhang, Z., & Zhang, S. (2007). Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Science of the Total Environment, 387(1–3), 96–104.

  • Zhou, X., Li, Y. J., & Zhao, B. (2010). Countermeasures for remediation of heavy metal contaminated soil. Guangdong Agric. Sci., 37(12), 158–160.

    Article  Google Scholar 

Download references


The authors would like to thank the Health Care Without Harm (HCWM) for partial support of the work. We are also grateful to the Department of Environment Studies, Panjab University, Chandigarh, India, for providing the necessary support to complete the experimental work.

Author information

Authors and Affiliations



Dr. Suman Mor: Conceptualization, methodology, resources, formal analysis, visualization and writing (reviewing and editing); Nitasha Vig: Methodology, software, validation, investigation, data curation, and visualization. Dr. Ravindra Khaiwal: Conceptualization, supervision, writing (reviewing and editing) visualization and writing (reviewing and editing).

Corresponding author

Correspondence to Khaiwal Ravindra.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mor, S., Vig, N. & Ravindra, K. Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health. Environ Monit Assess 194, 263 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: