Abstract
Access to water through shallow groundwater wells is a common practice in coastal settlements. This, coupled with a lack of planning for wastewater disposal promotes fecal contamination of groundwater and poses a threat to human health. Here, the spatial and temporal dynamics of groundwater fecal contamination was evaluated during summer and winter (2013 and 2014) in a coastal protected area having a high touristic relevance (Cabo Polonio, Uruguay). Fecal coliforms (FC) abundance in groundwater was significantly higher during summer, related to an influx of ~ 1000 tourists per day. A significant spatial autocorrelation was found in 2014, when the abundance of FC in a well was influenced by its three nearest wells (Moran and Geary tests). The applied statistical models (mixed models) indicated that total phosphorus and organic matter were the variables significantly explaining FC abundance. The risk for human health was estimated using groundwater-extracted DNA and qPCR of genes encoding for E. coli virulence factors (stx1, stx2, and eae). Potential Shiga toxin-producing enteropathogenic and enterohemorrhagic pathotypes were detected, even at FC abundances ≤ 1 CFU (100 mL−1). Moreover, we found that contaminated groundwater reached the beach, being the presence of FC in sand detected even in winter and showing its highest frequency nearby groundwater wells consistently having high FC abundance (hot spots). Altogether, the results show that fecal contamination of shallow groundwater in Cabo Polonio involves a risk for human health that intensifies during summer (associated to a significant increase of tourists). This contamination also impacts the beach, where FC can remain through the whole year.




Similar content being viewed by others
References
APHA, A. (1998). Standard methods for the examination of water and wastewater. American Public Health Association.
Arnade, L. J. (1999). Seasonal correlation of well contamination and septic tank distance. Groundwater, 37(6), 920–923. https://doi.org/10.1111/j.1745-6584.1999.tb01191.x
Baudart, J., Coallier, J., Laurent, P., & Prévost, M. (2002). Rapid and sensitive enumeration of viable diluted cells of members of the family Enterobacteriaceae in freshwater and drinking water. Applied and Environmental Microbiology, 68(10), 5057–5063. https://doi.org/10.1128/AEM.68.10.5057-5063.2002
Boi, P., Amalfitano, S., Manti, A., Semprucci, F., Sisti, D., Rocchi, M., Balsamo, M., & Papa, S. (2016). Strategies for water quality assessment: A multiparametric analysis of microbiological changes in river waters. River Research and Applications, 32(3), 490–500. https://doi.org/10.1002/rra.2872
Bradford, S. A., & Harvey, R. W. (2017). Future research needs involving pathogens in groundwater. Hydrogeology Journal, 25(4), 931–938. https://doi.org/10.1007/s10040-016-1501-0
Cassini, M. H., Szteren, D., & Fernández-Juricic, E. (2004). Fence effects on the behavioural responses of South American fur seals to tourist approaches. Journal of Ethology, 22(2), 127–133. https://doi.org/10.1007/s10164-003-0112-0
Chalmers, R., Aird, H., & Bolton, F. (2000). Waterborne Escherichia coli O157. Journal of Applied Microbiology, 88(S1), 124S-132S. https://doi.org/10.1111/j.1365-2672.2000.tb05340.x
Chassagne, L., Pradel, N., Robin, F., Livrelli, V., Bonnet, R., & Delmas, J. (2009). Detection of stx1, stx2, and eae genes of enterohemorrhagic Escherichia coli using SYBR Green in a real-time polymerase chain reaction. Diagnostic Microbiology and Infectious Disease, 64(1), 98–101. https://doi.org/10.1016/j.diagmicrobio.2009.01.031
Chouhy, M. (2013). Cabo Polonio, área protegida: Conservacionismo en diálogo con cosmovisiones salvajes. Anuario de Antropología Social y Cultural en Uruguay, 11, 87–102 (Spanish).
Coccossis, H., Mexa, A., & Collovini, A. (2002). Defining, measuring and evaluating carrying capacity in european tourism destinations, final report B4-3040/2000/294577/MAR/D2. European Union Athens (Greece).
Cortazo, R. (2012). Impacto paisajístico ambiental en la zona de Cabo Polonio y Cerro de la Buena Vista. Master thesis in Environmental Sciences (Spanish) http://www.fadu.edu.uy/sepep/tesis/impacto-paisajistico-ambiental-en-la-zona-de-cabo-polonio-y-cerro-de-la-buena-vista/. Accessed 13 December 2021.
Crossland, C. J., Kremer, H. H., Lindeboom, H., Crossland, J. I. M., & Le Tissier, M. D. A. (2005). Coastal fluxes in the Anthropocene: the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Springer Science & Business Media. ISBN 3540254501.
Custodio, E., & Lamas, M. (1983) Hidrología Subterránea. Ediciones Omega. Tomo, I (p. 2350). Barcelona.
Davenport, J., & Davenport, J. L. (2006). The impact of tourism and personal leisure transport on coastal environments: A review. Estuarine, Coastal and Shelf Science, 67(1), 280–292. https://doi.org/10.1016/j.ecss.2005.11.026
Dean, W. E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Research, 44(1), 242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
Delfino, L., & Masciadri, S. (2005). Relevamiento florístico en el cabo Polonio, Rocha, Uruguay. Iheringia. Série Botânica, 60(2), 119–128.
Edberg, S., Rice, E., Karlin, R., & Allen, M. (2000). Escherichia coli: The best biological drinking water indicator for public health protection. Journal of Applied Microbiology, 88(S1), 106S-116S. https://doi.org/10.1111/j.1365-2672.2000.tb05338.x
Ferguson, A. S., Layton, A. C., Mailloux, B. J., Culligan, P. J., Williams, D. E., Smartt, A. E., Sayler, G. S., Feighery, J., McKay, L. D., & Knappett, P. S. (2012). Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Science of the Total Environment, 431, 314–322. https://doi.org/10.1016/j.scitotenv.2012.05.060
Ferrer, N., Folch, A., Masó, G., Sanchez, S., & Sanchez-Vila, X. (2020). What are the main factors influencing the presence of fecal bacteria pollution in groundwater systems in developing countries? Journal of Contaminant Hydrology, 228, 103556. https://doi.org/10.1016/j.jconhyd.2019.103556
Gillis, J. R. (2012). The human shore: Seacoasts in history. University of Chicago Press.
Haller, L., Poté, J., Loizeau, J.-L., & Wildi, W. (2009). Distribution and survival of fecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva. Switzerland. Ecological Indicators, 9(3), 540–547. https://doi.org/10.1016/j.ecolind.2008.08.001
Holder, J. S. (1988). Pattern and impact of tourism on the environment of the Caribbean. Tourism Management, 9(2), 119–127. https://doi.org/10.1016/0261-5177(88)90021-0
Hynds, P. D., Thomas, M. K., & Pintar, K. D. M. (2014). Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis. PLoS ONE, 9(5), e93301. https://doi.org/10.1371/journal.pone.0093301
Ibekwe, A. M., Murinda, S. E., & Graves, A. K. (2011). Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS ONE, 6(6), e20819. https://doi.org/10.1371/journal.pone.0020819
Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48(7), 624–649. https://doi.org/10.1016/j.marpolbul.2003.12.004
John, D. E., & Rose, J. B. (2005). Review of factors affecting microbial survival in groundwater. Environmental Science & Technology, 39(19), 7345–7356. https://doi.org/10.1021/es047995w
Kralik, P., & Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, 8, 108. https://doi.org/10.3389/fmicb.2017.00108
Li, P., & Wu, J. (2019). Drinking water quality and public health. Exposure and Health, 11, 73–79. https://doi.org/10.1007/s12403-019-00299-8
Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of Environmental Contamination and Toxicology, 80, 1–10. https://doi.org/10.1007/s00244-020-00805-z
Macler, B. A., & Merkle, J. C. (2000). Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8(1), 29–40.
Michelacci, V., Tozzoli, R., Caprioli, A., Martínez, R., Scheutz, F., Grande, L., Sánchez, S., & Morabito, S. (2013). A new pathogenicity island carrying an allelic variant of the Subtilase cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clinical Microbiology and Infection, 19(3), E149–E156. https://doi.org/10.1111/1469-0691.12122
Milanés Batista, C., Suárez, A., & Botero Saltarén, C. M. (2017). Novel method to delimitate and demarcate coastal zone boundaries. Ocean & Coastal Management, 144, 105–119. https://doi.org/10.1016/j.ocecoaman.2017.04.021
Morteza, Z., Reza, F. M., Seddiq, M. M., Sharareh, P., & Jamal, G. (2016). Selection of the optimal tourism site using the ANP and fuzzy TOPSIS in the framework of Integrated Coastal Zone Management: A case of Qeshm Island. Ocean & Coastal Management, 130, 179–187. https://doi.org/10.1016/j.ocecoaman.2016.06.012.
Murphy, H. M., Prioleau, M. D., Borchardt, M. A., & Hynds, P. D. (2017). Review: Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeology Journal, 25(4), 981–1001. https://doi.org/10.1007/s10040-017-1543-y
Mussio, P., Bernié, I. M., Soumastre, M., & Maquieira, A. M. (2014). Validación de la detección de STEC (O26, O45, O103, O111, O121, O145 y O157) en hamburguesas crudas mediante el uso de PCR a tiempo real (BAX® System Q7, DuPont) utilizando «WET POOLS». Innotec, (9 ene-dic), 75–83.
Navarro, E., Serrano-Heras, G., Castaño, M., & Solera, J. (2015). Real-time PCR detection chemistry. Clinica Chimica Acta, 439, 231–250. https://doi.org/10.1016/j.cca.2014.10.017
Panario, D., & Piñeiro, G. (1997). Vulnerability of oceanic dune systems under wind pattern change scenarios in Uruguay. Climate Research, 09(1–2), 67–72. https://doi.org/10.3354/cr009067
Pang, L., Close, M., Goltz, M., Sinton, L., Davies, H., Hall, C., & Stanton, G. (2004). Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Environment International, 29(7), 907–921. https://doi.org/10.1016/S0160-4120(03)00054-0
Paruch, A. M., & Mæhlum, T. (2012). Specific features of Escherichia coli that distinguish it from coliform and thermotolerant coliform bacteria and define it as the most accurate indicator of fecal contamination in the environment. Ecological Indicators, 23, 140–142. https://doi.org/10.1016/j.ecolind.2012.03.026
Payment, P., & Locas, A. (2011). Pathogens in water: Value and limits of correlation with microbial indicators. Groundwater, 49(1), 4–11. https://doi.org/10.1111/j.1745-6584.2010.00710.x
Quilliam, R. S., Clements, K., Duce, C., Cottrill, S. B., Malham, S. K., & Jones, D. L. (2011). Spatial variation of waterborne Escherichia coli—Implications for routine water quality monitoring. Journal of Water and Health, 9(4), 734–737. https://doi.org/10.2166/wh.2011.057
Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., & Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157: H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases, 11(4), 603. https://doi.org/10.3201/eid1104.040739
Sanders, L. (2013). Models in spatial analysis. John Wiley & Sons.
Scandura, J., & Sobsey, M. (1997). Viral and bacterial contamination of groundwater from on-site sewage treatment systems. Water Science and Technology, 35(11–12), 141. https://doi.org/10.1016/S0273-1223(97)00249-7
Soumastre, M., Rodríguez-Gallego, L., & Piccini, C. (2015). Enterobacterial growth in coastal groundwater wells of Cabo Polonio (Uruguay): An experimental approach. Pan-American Journal of Aquatic Sciences, 10(3), 182–188.
Soutullo, A., & Bartesaghi, L. (2007). Objetivos de representación del Sistema Nacional de Áreas Protegidas de Uruguay: propuesta preliminar y análisis de la contribución de las áreas en proceso de incorporación al sistema a esos objetivos. Serie documentos de trabajo (15), 60 (Spanish).
Tuneu Corral, C., Szteren, D., & Cassini, M. H. (2018). Short- and long-term changes in the intensity of responses of pinnipeds to tourist approaches in Cabo Polonio, Uruguay. Applied Animal Behaviour Science, 201, 111–116. https://doi.org/10.1016/j.applanim.2017.12.012
Umpiérrez, A., Bado, I., Oliver, M., Acquistapace, S., Etcheverría, A., Padola, N. L., Vignoli, R., & Zunino, P. (2017). Zoonotic potential and antibiotic resistance of Escherichia coli in neonatal calves in Uruguay. Microbes and Environments, 32(3), 275–282. https://doi.org/10.1264/jsme2.ME17046
USPHS. (1958). Manual of septic tank practice. US Department of Health Education and Welfare, USPHS Publication No. 526, Bureau of State Services, Division of Sanitary Engineering Services.
Van Geen, A., Ahmed, K. M., Akita, Y., Alam, M. J., Culligan, P. J., Emch, M., Escamilla, V., Feighery, J., Ferguson, A. S., & Knappett, P. (2011). Fecal contamination of shallow tubewells in Bangladesh inversely related to arsenic. Environmental Science & Technology, 45(4), 1199–1205. https://doi.org/10.1021/es103192b
Wang, D., Wu, J., Wang, Y., & Ji, Y. (2020). Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: Analysis, assessment, and management. Exposure and Health, 12, 307–322. https://doi.org/10.1007/s12403-019-00314-y
Acknowledgements
We thank Dr. M. Bessonart and the National Directorate of Aquatic Resources, (DINARA, Dirección Nacional de Recursos Acuáticos) and the National System of Protected Areas (SNAP, Sistema Nacional de Áreas Protegidas) for enabling us to use their facilities and human resources at Cabo Polonio National Park. We are also very grateful to the neighbors that allowed access to their groundwater wells. This work was supported by CSIC and PEDECIBA. This work was carried out in fulfillment of the requirements of M. Soumastre to obtain the master degree from PEDECIBA.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
10661_2021_9672_MOESM1_ESM.tiff
Supplementary file1 Fig. 1. Neighborhood networks defined for the 24 sampling sites: A) triangulation-based; B) 2 neighbors-based; C) 3 neighbors-based and D) 4 neighbors-based networks. (TIFF 1596 KB)
10661_2021_9672_MOESM2_ESM.tiff
Supplementary file2 Fig. 2. CFU g−1 of dry weight in sand samples from La Calavera beach. Data were grouped in high and low season (HS and LS respectively). The range (min to max) found for the upper beach (grey shaded bars) and the swash zone (white bars) are shown. Each dot corresponds to a single sample. (TIFF 63 KB)
Rights and permissions
About this article
Cite this article
Soumastre, M., Piccini, J., Rodríguez-Gallego, L. et al. Spatial and temporal dynamics and potential pathogenicity of fecal coliforms in coastal shallow groundwater wells. Environ Monit Assess 194, 89 (2022). https://doi.org/10.1007/s10661-021-09672-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-021-09672-0


