Skip to main content

Advertisement

Log in

Differential tissue accumulation in the invasive Manila clam, Ruditapes philippinarum, under two environmentally relevant lanthanum concentrations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Among the environmental emerging concern rare earth elements, lanthanum (La) is one of the most common and reactive. Lanthanum is widely used in numerous modern technologies and applications, and its intense usage results in increasing discharges into the environment, with potentially deleterious consequences to earthlings. Therefore, we exposed the important food resource and powerful monitoring tool Manila clam to two environmentally relevant concentrations of La (0.3 µg L−1 and 0.9 µg L−1) for 6 days, through water, to assess the bioaccumulation pattern in the gills, digestive gland, and remaining body. The La bioaccumulation was measured after 1 (T1), 2 (T2), and 6 (T6) days of exposure. Lanthanum was bioaccumulated after 2 days, and the levels increased in all tissues in a dose-dependent manner. When exposed to 0.3 µg L−1, the enrichment factor pattern was gills > body > digestive gland. However, when exposed to 0.9 µg L−1, the pattern appears to change to gills > digestive gland > body. Tissue portioning appears to be linked with exposed concentration: In higher exposure levels, digestive gland seems to gain importance, probably associated with detoxification mechanisms. Here, we describe for the first time La bioaccumulation in these different tissues in a bivalve species. Future studies dealing with the bioaccumulation and availability of La should connect them with additional water parameters (such as temperature, pH, and major cations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Akagi, T., & Edanami, K. (2017). Sources of rare earth elements in shells and soft tissues of bivalves from Tokyo Bay. Marine Chemistry, 194, 55–62. https://doi.org/10.1016/j.marchem.2017.02.009

    Article  CAS  Google Scholar 

  • Albaaj, F., & Hutchison, A. (2005). Lanthanum carbonate (Fosrenol®): A novel agent for the treatment of hyperphosphataemia in renal failure and dialysis patients. International Journal of Clinical Practice, 59, 1091–1096. https://doi.org/10.1111/j.1368-5031.2005.00592.x

    Article  CAS  Google Scholar 

  • Almeida Â., Freitas R., Calisto V., Esteves V., Schneider R., Soares A. M. V. M., & Figueira, E. (2015). Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Comparative Biochemistry and Physiology – Part C: Toxicology & Pharmacology, 172–173, 26–35

  • Bonnail, E., Pérez-López, R., Sarmiento, A. M., Nieto, J. M., & DelValls, T. Á. (2017). A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea. Journal of Hazardous Materials, 338, 466–471.

  • Brito, P., Prego, R., Mil-Homens, M., Caçador, I., & Caetano, M. (2018). Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Science of the Total Environment, 621, 317–325. https://doi.org/10.1016/j.scitotenv.2017.11.245

    Article  CAS  Google Scholar 

  • Caetano, M., Prego, R., Vale, C., de Pablo, H., & Marmolejo-Rodríguez, J. (2009). Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Marine Chemistry, 116, 36–46. https://doi.org/10.1016/j.marchem.2009.09.003

    Article  CAS  Google Scholar 

  • Cánovas, C. R., Basallote, M. D., & Macías, F. (2020). Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ria of Huelva (SW Spain). Environmental Pollution, 267, 115506. https://doi.org/10.1016/j.envpol.2020.115506

    Article  CAS  Google Scholar 

  • De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Soares, A. M., & Freitas, R. (2017). The impacts of emergent pollutants on Ruditapes philippinarum: Biochemical responses to carbon nanoparticles exposure. Aquatic Toxicology, 187, 38–47. https://doi.org/10.1016/j.aquatox.2017.03.010

    Article  CAS  Google Scholar 

  • Figueiredo, C., Grilo, T. F., Lopes, C., Brito, P., Diniz, M., Caetano, M., Rosa, R., & Raimundo, J. (2018). Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla). Chemosphere, 206, 414–423. https://doi.org/10.1016/j.chemosphere.2018.05.029

    Article  CAS  Google Scholar 

  • Guo-Qing, H., & Dong-Feng, W. (2016). Effects of lanthanum on the cadmium uptake of pacific oyster Crassostrea gigas. Indian Journal of Geo-Marine Science, 45, 653–657. http://nopr.niscair.res.in/handle/123456789/35080

  • Herrmann, H., Nolde, J., Berger, S., & Heise, S. (2016). Aquatic ecotoxicity of lanthanum–A review and an attempt to derive water and sediment quality criteria. Ecotoxicology and Environmental Safety, 124, 213–238. https://doi.org/10.1016/j.ecoenv.2015.09.033

    Article  CAS  Google Scholar 

  • Jang, S.-W., Kim, S.-G., Choi, O.-I., Kim, S.-S., & Kang, J.-C. (2009). Cadmium accumulation and elimination in the tissues of the Manila Clam, Ruditapes philippinarum, after Sub-chronic Cadmium Exposure. The Korean society of fisheries and aquatic science, 12, 324–330. https://doi.org/10.5657/fas.2009.12.4.324

  • Khan, A. M., Bakar, N. K. A., Bakar, A. F. A., & Ashraf, M. A. (2017). Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review. Environmental Science and Pollution Research, 24, 22764–22789. https://doi.org/10.1007/s11356-016-7427-1

    Article  CAS  Google Scholar 

  • Liang, T., Li, K., & Wang, L. (2014). State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 186, 1499–1513. https://doi.org/10.1007/s10661-013-3469-8

    Article  CAS  Google Scholar 

  • Liu, J., Cao, L., & Dou, S. (2017). Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Marine Pollution Bulletin, 117, 98–110. https://doi.org/10.1016/j.marpolbul.2017.01.062

    Article  CAS  Google Scholar 

  • Moermond, C. T., Tijink, J., van Wezel, A. P., & Koelmans, A. A. (2001). Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, The Netherlands. Environmental Toxicology and Chemistry: An International Journal, 20, 1916–1926. https://doi.org/10.1002/etc.5620200909

    Article  CAS  Google Scholar 

  • Moura, P., Vasconcelos, P., Pereira, F., Chainho, P., Costa, J. L., & Gaspar, M. B. (2018). Reproductive cycle of the Manila clam (Ruditapes philippinarum): An intensively harvested invasive species in the Tagus Estuary (Portugal). Marine Biological Association of the United Kingdom. Journal of the Marine Biological Association of the United Kingdom, 98, 1645–1657. https://doi.org/10.1017/S0025315417001382

    Article  Google Scholar 

  • Palmer, A. S., Snape, I., Stark, J. S., Johnstone, G. J., & Townsend, A. T. (2006). Baseline metal concentrations in Paramoera walkeri from East Antarctica. Marine Pollution Bulletin, 52, 1441–1449. https://doi.org/10.1016/j.marpolbul.2006.04.012

    Article  CAS  Google Scholar 

  • Pereira, P., Raimundo, J., Barata, M., Araújo, O., Pousão-Ferreira, P., Canário, J., Almeida, A., & Pacheco, M. (2015). A new page on the road book of inorganic mercury in fish body–tissue distribution and elimination following waterborne exposure and post-exposure periods. Metallomics, 7, 525–535. https://doi.org/10.1039/c4mt00291a

    Article  CAS  Google Scholar 

  • Pernice, M., Boucher, J., Boucher-Rodoni, R., Joannot, P., & Bustamante, P. (2009). Comparative bioaccumulation of trace elements between Nautilus pompilius and Nautilus macromphalus (Cephalopoda: Nautiloidea) from Vanuatu and New Caledonia. Ecotoxicology and Environmental Safety, 72, 365–371. https://doi.org/10.1016/j.ecoenv.2008.04.019

    Article  CAS  Google Scholar 

  • Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Di Cosmo, A., & Soares, A. M. (2019). Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 211, 181–192. https://doi.org/10.1016/j.aquatox.2019.03.017

    Article  CAS  Google Scholar 

  • Raimundo, J., Vale, C., Caetano, M., Giacomello, E., Anes, B., & Menezes, G. M. (2013). Natural trace element enrichment in fishes from a volcanic and tectonically active region (Azores archipelago). Deep Sea Research Part II: Topical Studies in Oceanography, 98, 137–147. https://doi.org/10.1016/j.dsr2.2013.02.009

    Article  CAS  Google Scholar 

  • Sanghera, J., & Aggarwal, I. D. (1998). Infrared fiber optics. CRC Press

    Google Scholar 

  • Sofia, F. (2018). The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome.

  • Tansel, B. (2017). From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environment International, 98, 35–45. https://doi.org/10.1016/j.envint.2016.10.002

    Article  Google Scholar 

  • Wall, F. (2014). Rare earth elements. Critical metals handbook, 312–339.

  • Wang, Z.-L., & Yamada, M. (2007). Geochemistry of dissolved rare earth elements in the Equatorial Pacific Ocean. Environmental Geology, 52, 779–787. https://doi.org/10.1007/s00254-006-0515-7

    Article  CAS  Google Scholar 

  • Won, E.-J., Kim, K.-T., Choi, J.-Y., Kim, E.-S., & Ra, K. (2016). Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: Laboratory and in-situ transplantation experiments. Environmental Monitoring and Assessment, 188, 478. https://doi.org/10.1007/s10661-016-5485-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for the useful comments and valuable advice for the improvement of this work.

Funding

This study was funded by Fundação para a Ciência e Tecnologia (FCT), through the project Climatoxeel (PTDC/AAG-GLO/3795/2014) and the Junior Researcher contract (CEECIND/03517/2017), both awarded to TFG, the FCT-PhD grant SFRH/BD/130023/2017 awarded to CF and the strategic project UID/MAR/04292/2019 granted to MARE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cátia Figueiredo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, C., Grilo, T.F., Lopes, A.R. et al. Differential tissue accumulation in the invasive Manila clam, Ruditapes philippinarum, under two environmentally relevant lanthanum concentrations. Environ Monit Assess 194, 11 (2022). https://doi.org/10.1007/s10661-021-09666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09666-y

Keywords

Navigation