Skip to main content
Log in

Estimation of methane emission from an urban wastewater treatment plant applying inverse Gaussian model

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The methane (CH4) emissions from urban sources are increasing, and they depend on the processes and technologies applied in each one. Thus, studying them individually to quantify their emissions and understand their behavior to design CH4 mitigation strategies is meaningful. Although many studies have been carried out in different cities worldwide, the complex methodologies and technologies applied are not readily available in developing countries. The main objective of this work is to apply a simple and inexpensive methodology to collect air samples in urban areas using syringes with a three-way stopcock. Considering the baseline concentration in different urban zones, the WWTP contribution to atmospheric CH4 concentration was assessed. Moreover, it was possible to estimate the CH4 emission rate from the source by applying the inverse Gaussian model. The atmospheric CH4 concentrations inside and around the WWTP varied from 2.04 to 32.78 ppm. Most of the highest concentrations were found inside the WWTP; however, high concentrations were found up to 500 m from its center. The values in the urban zones were between 2.06 and 3.52 ppm, consistently higher in the area with the highest population density. Finally, considering the WWTP as a single source and according to the operational and atmospheric conditions during the studied period, the mean CH4 emission rate from this source was 2.08E + 04 μg s−1. The proposed sampling methodology could be applied to estimate CH4 emission rates from fixed sources in areas with overlapping sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available in the Mendeley Data repository: https://data.mendeley.com/datasets/c7hjmtrbp8/1. Stadler, Carla Sofía; Fusé, Victoria Susana; Linares, Santiago; Juliarena, Maria Paula (2021), “Atmospheric CH4 concentration in a WWTP and different urban zones”, Mendeley Data, V1, https://doi.org/10.17632/c7hjmtrbp8.1.

Code availability

Not applicable.

References

  • Ahmed, E., Kim, K. H., Jeon, E. C., & Brown, R. J. C. (2015). Long term trends of methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere. Science of the Total Environment, 518–519, 595–604. https://doi.org/10.1016/j.scitotenv.2015.02.058

    Article  CAS  Google Scholar 

  • Aliaga, V. S., Ferrelli, F., & Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237–1247. https://doi.org/10.1002/joc.5079

    Article  Google Scholar 

  • Blaha, D., Bartlett, K., Czepiel, P., Harriss, R., & Crill, P. (1999). Natural and anthropogenic methane sources in New England. Atmospheric Environment, 33(2), 243–255. https://doi.org/10.1016/S1352-2310(98)00153-8

    Article  CAS  Google Scholar 

  • Caulton, D. R., Li, Q., Bou-Zeid, E., Fitts, J. P., Golston, L. M., Pan, D., Lu, J., Lane, H. M., Buchholz, B., Guo, X., McSpiritt, J., Wendt, L., & Zondlo, M. A. (2018). Quantifying uncertainties from mobile-laboratory-derived emissions of well pads using inverse Gaussian methods. Atmospheric Chemistry and Physics, 18(20), 15145–15168. https://doi.org/10.5194/acp-18-15145-2018

    Article  CAS  Google Scholar 

  • Chamberlain, S. D., Ingraffea, A. R., & Sparks, J. P. (2016). Sourcing methane and carbon dioxide emissions from a small city: Influence of natural gas leakage and combustion. Environmental Pollution, 218, 102–110. https://doi.org/10.1016/j.envpol.2016.08.036

    Article  CAS  Google Scholar 

  • Czepiel, P. M., Crill, P. M., & Harriss, R. C. (1993). Methane emissions from municipal wastewater treatment processes. Environmental Science and Technology, 27(12), 2472–2477.

    Article  CAS  Google Scholar 

  • Daelman, M. R. J., van Voorthuizen, E. M., van Dongen, U. G. J. M., Volcke, E. I. P., & van Loosdrecht, M. C. M. (2012). Methane emission during municipal wastewater treatment. Water Research. https://doi.org/10.1016/j.watres.2012.04.024

    Article  Google Scholar 

  • Daelman, M. R. J., Van Voorthuizen, E. M., Van Dongen, L. G. J. M., Volcke, E. I. P., & Van Loosdrecht, M. C. M. (2013). Methane and nitrous oxide emissions from municipal wastewater treatment - Results from a long-term study. Water Science and Technology, 67(10), 2350–2355. https://doi.org/10.2166/wst.2013.109

    Article  CAS  Google Scholar 

  • Delre, A., Mønster, J., & Scheutz, C. (2017). Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method. Science of the Total Environment, 605–606, 258–268. https://doi.org/10.1016/j.scitotenv.2017.06.177

    Article  CAS  Google Scholar 

  • Devai, I., & DeLaune, R. D. (1999). Emission of reduced malodorous sulfur gases from wastewater treatment plants. Water Environment Research, 71(2), 203–208. https://doi.org/10.2175/106143098x121842

    Article  CAS  Google Scholar 

  • El-Fadel, M., & Massoud, M. (2001). Methane emissions from wastewater management. Environmental Pollution, 114(2), 177–185. https://doi.org/10.1016/S0269-7491(00)00222-0

    Article  CAS  Google Scholar 

  • Fiore, A. M., West, J. J., Horowitz, L. W., Naik, V., & Schwarzkopf, M. D. (2008). Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J. Geophys. Res. Atmos., 113, 1–16. https://doi.org/10.1029/2007JD009162

    Article  CAS  Google Scholar 

  • Foster-Wittig, T. A., Thoma, E. D., & Albertson, J. D. (2015). Estimation of point source fugitive emission rates from a single sensor time series: A conditionally-sampled Gaussian plume reconstruction. Atmospheric Environment, 115, 101–109. https://doi.org/10.1016/j.atmosenv.2015.05.042

    Article  CAS  Google Scholar 

  • Fritz, B. K., Shaw, B. W., & Parnell, C. B., Jr. (2005). Influence of meteorological time frame and variation on horizontal dispersion coefficients in gaussian dispersion modeling. American Society of Agricultural Engineers, 48(3), 1185–1196.

    Article  Google Scholar 

  • Fusé, V. S., Gere, J. I., Urteaga, D., Juliarena, M. P., Guzmán, S. A., & Gratton, R. (2019). Atmospheric methane concentration allows estimating natural gas leaks in heating systems in Tandil. Argentina. Journal of Environmental Quality, 48(3), 762–769. https://doi.org/10.2134/jeq2018.05.0220

    Article  CAS  Google Scholar 

  • FVSA. (2013). Escenarios energéticos para la Argentina (2003–2030) con políticas de eficiencia. Fundación Vida Silvestre, 55.

  • Galotti, P., & Santalla, E. (2009). Estimación del potencial energético de los efluentes industriales. Asades, 13, 187–194.

    Google Scholar 

  • Garnero, G., Godone, D. (2013). Comparisons between different interpolation techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(5W3), 139–144. https://doi.org/10.5194/isprsarchives-XL-5-W3-139-2013

  • Gioli, B., Toscano, P., Lugato, E., Matese, A., Miglietta, F., Zaldei, A., & Vaccari, F. P. (2012). Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution, 164, 125–131. https://doi.org/10.1016/j.envpol.2012.01.019

    Article  CAS  Google Scholar 

  • Hamoda, M. F. (2006). Air pollutants emissions from waste treatment and disposal facilities. Journal of Environmental Science and Health - Part A, 41(1), 77–85. https://doi.org/10.1080/10934520500298895

    Article  CAS  Google Scholar 

  • Howarth, R. W. (2014). A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Science and Engineering, 2(2), 47–60. https://doi.org/10.1002/ese3.35

    Article  CAS  Google Scholar 

  • INDEC. (2010). Population and housing national census 2010. Provincia de Buenos Aires. Hogares por tipo de vivienda, según combustible utilizado principalmente para cocinar. Inst. Nac. Estad. Censos República Argentina, Ciudad Autónoma de Buenos Aires, Argentina.

  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe K. (eds.), Published: IGES, Japan.

  • IPCC. (2021). Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press, In Press.

  • Koehn, A. C., Leytem, A. B., & Bjorneberg, D. L. (2013). Comparison of atmospheric stability methods for calculating ammonia and methane emission rates with windtrax. Transactions of the ASABE, 56(2), 763–768.

    Article  CAS  Google Scholar 

  • Kong, H. N., Kimochi, Y., Mizuochi, M., Inamori, R., & Inamori, Y. (2002). Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process. Science of the Total Environment, 290(1–3), 59–67. https://doi.org/10.1016/S0048-9697(01)01058-0

    Article  CAS  Google Scholar 

  • Kupper, T., Bühler, M., Gruber, W., Häni, C. (2018). Methane and ammonia emissions from wastewater treatment plants. A brief literature review. Bern University of Applied Sciences. School of Agricultural, Forest and Food Sciences HAFL, 1–18.

  • Levine, A. D., Tchobanoglous, G., Asano, T. (1985). Characterization of the size distribution of contaminants in wastewater: Treatment and reuse implications. Journal (Water Pollution Control Federation), 57(7), 805–816. https://www.jstor.org/stable/25042701

  • Martin, D. O. (1976). Comment On “The change of concentration standard deviations with distance.” Journal of the Air Pollution Control Association, 26(2), 145–147.

    Article  Google Scholar 

  • Masuda, S., Suzuki, S., Sano, I., Li, Y. Y., & Nishimura, O. (2015). The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant. Chemosphere, 140, 167–173. https://doi.org/10.1016/j.chemosphere.2014.09.042

    Article  CAS  Google Scholar 

  • Melli, P., and Runca, E. (1979). Gaussian plume model parameters for ground-level and elevated sources derived from the atmospheric diffusion equation in a neutral case. Journal of Applied Meteorology, 18, 1216–1221. https://doi.org/10.1175/1520-0450(1979)0181216:GPMPFG2.0.CO;2

  • Milas, L., Mitasova, H. (2005). Spatial interpolation. Geographic Information Systems: Principles, Techniques, Management and Applications, 2nd Edition, 1, Part 2, 481–492. www.geos.ed.ac.uk/~gisteac/gis_book_abridged/

  • Ministry of Environment and Sustainable Development. (2017). Argentina’s National Greenhouse Gases (GHG) Inventory [Inventario Nacional de Gases de Efecto Invernadero (GEI) de Argentina]. https://inventariogei.ambiente.gob.ar/files/inventario-nacional-gei-argentina.pd

  • Modrak, M., D’Amato, V., Doorn, M., Hashmonay, R., Vergara, W., Deeb, A., Surez, C., Aparicio, C., & Cuevas, M. (2006). Characterization of fugitive emissions of greenhouse gases from a wastewater treatment plant using the radial plume mapping technique. Proceedings of the Water Environment Federation, 7200–7205. https://doi.org/10.2175/193864706783761347

  • Mønster, J. G., Samuelsson, J., Kjeldsen, P., Rella, C. W., & Scheutz, C. (2014). Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements — A sensitivity analysis based on multiple field surveys. Waste Management, 34(8), 1416–1428. https://doi.org/10.1016/j.wasman.2014.03.025

  • Pagano, A. M., Benger, F., & Gely, M. C. (2009). Estimación de factores de emisión locales para las actividades de generación de metano en el sector aguas residuales domiciliarias de la provincia de buenos aires. Avances En Energías Renovables y Medio Ambiente, 13, 147–153.

    Google Scholar 

  • Picone, N. (2014). Clima Urbano de la Ciudad de Tandil. Universidad Nacional de Bahía Blanca.

  • Picone, N., Campo, A. (2014). Comparación urbano-rural de parámetros meteorológicos en la ciudad de Tandil, Argentina. Revista de Climatología, 14(january), 13–24. http://www.climatol.eu/reclim/reclim14b.pdf

  • Picone, N., Linares, S. (2014). Propuesta metodológica para la extracción y análisis de densidades urbanas mediante teledetección y SIG. Caso de estudio: ciudad de Tandil, Argentina. Revista Universitaria de Geografía, 23(2), 77–96.

  • Singh, R. K., & Pandya, G. H. (2013). Atmospheric mixing-height measurements and ambient air quality near a coastal industrial area: A case study from Mangalore. Environmental Quality Management, 22, 61–78. https://doi.org/10.1002/tqem.21343

    Article  Google Scholar 

  • Souza, C. L., Chernicharo, C. A. L., & Aquino, S. F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science and Technology, 64(11), 2259–2264. https://doi.org/10.2166/wst.2011.695

    Article  CAS  Google Scholar 

  • Thomson, L. C., Hirst, B., Gibson, G., Gillespie, S., Jonathan, P., Skeldon, K. D., & Padgett, M. J. (2007). An improved algorithm for locating a gas source using inverse methods. Atmospheric Environment, 41(6), 1128–1134. https://doi.org/10.1016/j.atmosenv.2006.10.003

    Article  CAS  Google Scholar 

  • Turner, D. B. (1970). Workbook of Atmospheric Dispersion Estimates (p. 86). https://doi.org/10.1097/00000441-197308000-00013

  • Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., & Miller, C. E. (2017). Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: Calibration, urban enhancements, and uncertainty estimates. Atmospheric Chemistry and Physics, 17(13), 8313–8341. https://doi.org/10.5194/acp-17-8313-2017

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, J., Xie, H., Qi, P., Ren, Y., & Hu, Z. (2010). Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresource Technology, 102(9), 5479–5485. https://doi.org/10.1016/j.biortech.2010.10.090

    Article  CAS  Google Scholar 

  • Wark, K., & Warner, C. (2012). Contaminación del aire: Origen y control = Air pollution, its origin and control/Kenneth Wark and Cecnil F. Warner. México, Limusa. ISBN: 978–968–18–1954–5.

  • Widiana, D. R., Wang, Y. F., You, S. J., Yang, H. H., Wang, L. C., Tsai, J. H., & Chen, H. M. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant. Taiwan. Aerosol and Air Quality Research, 19(2), 375–382. https://doi.org/10.4209/aaqr.2018.11.0408

    Article  CAS  Google Scholar 

  • Yan, X., Li, L., & Liu, J. (2014). Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes. Journal of Environmental Sciences (china), 26(2), 256–263. https://doi.org/10.1016/S1001-0742(13)60429-5

    Article  CAS  Google Scholar 

  • Yoshida, H., Mønster, J., & Scheutz, C. (2014). Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Research, 61, 108–118. https://doi.org/10.1016/j.watres.2014.05.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Weather Service and Meteotandil weather station for the meteorological data. Carla S. Stadler is a graduate student in the Environment and Health Applied Sciences Doctoral Program (DCAAS) at the National University of the Center of Buenos Aires Province (UNCPBA), Argentina.

Funding

This work was supported by the Secretary of Science, Art and Technology (SECAT) of National University of the Center of Buenos Aires Province (UNCPBA), Argentina [03-PIO-21D] and by the National Scientific and Technical Research Council (CONICET) of the Ministry of Science, Technology, and Innovation (MINCyT), Argentina [PUE-CIFICEN—22920170100004CO].

Author information

Authors and Affiliations

Authors

Contributions

Carla Stadler: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing – Original Draft, Visualization. Victoria S Fusé: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing – Review & Editing. Santiago Linares: Formal analysis, Writing – Review & Editing. Paula Juliarena: Writing – Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Paula Juliarena.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadler, C., Fusé, V.S., Linares, S. et al. Estimation of methane emission from an urban wastewater treatment plant applying inverse Gaussian model. Environ Monit Assess 194, 27 (2022). https://doi.org/10.1007/s10661-021-09660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09660-4

Keywords

Navigation