Skip to main content
Log in

Macronutrients, trace metals and health risk assessment in agricultural soil and edible plants of Mahshahr City, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we evaluate the geochemistry of macro- (Fe, P, Ca, S, K, Na, Mg) and micronutrients (Mo, Cu, Pb, Zn, Co, Mn, Cd, Sr, Cr, Hg, Se), along with possible health risks of heavy metals contamination in agricultural soils and vegetables of the Mahshahr industrial port in Iran. Calculation of geochemical coefficients revealed the low pollution load of Mahshahr agricultural soils. Most of the investigated elements exhibited lower concentrations in soil than international standards. Element concentrations in plant samples were far below the permissible values set by environmental agencies. Based on permissible values, there was deficiency of several soil elements, including Cu, in vegetables because they are mostly present in the soil residual phase. An exception was Mn, which is the most mobile element in soil. The transfer factor (TF) of elements showed the following trend: K > Na > P > S > Mo > Hg > Se > Zn > Cd > Cu > Mg > Mn > Ca > Cr > Co ≈ Fe = Pb. There was high transfer of major elements from soil to plants, and lower values for micronutrients and heavy metals. The calculated daily intake (DIM) and health risk index (HRI) for ten plant species for adults were < 1, while the HRI was larger than 1 for Mn via radish consumption. According to geochemical investigations and statistical tests such as principal component analysis, Kruskal–Wallis, and correlation coefficient calculations, plant species play the most important role in elemental uptake by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References 

  • Acevedo-Figueroa, D., Jiménez, B. D., & Rodríguez-Sierra, C. J. (2006). Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution, 141(2), 336–342.

    CAS  Google Scholar 

  • Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., & Lima, A. (2014). Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Science of the Total Environment, 500, 11–22.

    Google Scholar 

  • Alimohammadi, M., Younesian, M., Madihi-Bidgoli, S., Nabizadeh Nodehi, R., Jahed Khaniki, G. R., Hadi, M., & Ghanbari, F. (2020). Heavy metal (oid) s concentration in Tehran supermarket vegetables: Carcinogenic and non-carcinogenic health risk assessment. Toxin Reviews, 39(3), 303–310.

    Google Scholar 

  • Alloway, B. J. (1990). Soil processes and the behaviour of metals. Heavy metals in soils., 7–28.

  • ATSDR. (1999). Toxicological profile for mercury. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=115&tid=24

  • ATSDR. (2004). Toxicological profile for cobalt. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=373&tid=64

  • Bahrami, S., Moore, F., & Keshavarzi, B. (2019). Evaluation, source apportionment and health risk assessment of heavy metal and polycyclic aromatic hydrocarbons in soil and vegetable of Ahvaz metropolis. Human and Ecological Risk Assessment: An International Journal, 1–30.

  • Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality, 34(1), 49–63.

    CAS  Google Scholar 

  • Cao, H., Chen, J., Zhang, J., Zhang, H., Qiao, L., & Men, Y. (2010). Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu. China. Journal of Environmental Sciences, 22(11), 1792–1799.

    CAS  Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment. (2007). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Update 7.0, Excerpt from Publication No. 1299; ISBN 1–896997–34–1.

  • CCME. (1991). (1997). (1999). (2015). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Canadian Council of Minister of the Environment.

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere, 87(8), 945–953.

    CAS  Google Scholar 

  • CODEX, A., & INTERGOVERNMENTAL, T. F. O. (2001). Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission Twenty-Fourth Session Geneva, 2-7 July 2001. Codex.

  • Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qiu, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning. China. Environment International, 30(6), 785–791.

    CAS  Google Scholar 

  • Daldoul, G., Souissi, R., Souissi, F., Jemmali, N., & Chakroun, H. K. (2015). Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. Journal of African Earth Sciences, 110, 150–159.

    CAS  Google Scholar 

  • Darwish, M. A. G., & Pöllmann, H. (2015). Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts. Journal of African Earth Sciences, 112, 358–373.

    CAS  Google Scholar 

  • Degryse, F., Smolders, E., & Parker, D. R. (2009). Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications - a review. European Journal of Soil Science, 60(4), 590–612. https://doi.org/10.1111/j.1365-2389.2009.01142.x

    Article  CAS  Google Scholar 

  • Dong, J., Yang, Q. W., Sun, L. N., Zeng, Q., Liu, S. J., Pan, J., & Liu, X. L. (2011). Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site. China. Environmental Earth Sciences, 64(5), 1317–1321.

    CAS  Google Scholar 

  • Dziubanek, G., Piekut, A., Rusin, M., Baranowska, R., & Hajok, I. (2015). Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicology and Environmental Safety, 118, 183–189.

    CAS  Google Scholar 

  • Eby, G. N. (2016). Principles of environmental geochemistry. Waveland Press.

    Google Scholar 

  • Ettler, V., Mihaljevič, M., Šebek, O., & Grygar, T. (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—Analytical and thermodynamic approaches. Analytica Chimica Acta, 602(1), 131–140.

    CAS  Google Scholar 

  • Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone. Iran. Catena, 121, 88–98.

    CAS  Google Scholar 

  • FAO, IASA, ISRIC, JRC, IIASA., (2008). Food and Agriculture Organization of the United Nations (FAO), the International Institute for Applied Systems Analysis (IIASA), World Soil Information (ISRIC), Institute of Soil Science – Chinese Academy of Science (ISSCAS) or Joint Research Centre of the European Commission (JRC) concerning the legal status of any country, Harmonized World Soil Database (version 1.0). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

  • Food and Agriculture Organization of the World Health Organization (FAO/WHO). (2011). Joint FAO/WHO Food Standards Program Codex Committee on Con-taminants in Foods. Fifth Session CF/5INF/1,21–25 March 2011.The Hague, The Netherlands.

  • Golobočanin, D. D., Škrbić, B. D., & Miljević, N. R. (2004). Principal component analysis for soil contamination with PAHs. Chemometrics and Intelligent Laboratory Systems, 72(2), 219–223.

    Google Scholar 

  • Guadie, A., Yesigat, A., Gatew, S., Worku, A., Liu, W., Ajibade, F. O., & Wang, A. (2021). Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Science of The Total Environment, 761, 143302.

  • Gupta, A. K., & Sinha, S. (2006). Role of Brassica juncea (L.) Czern.(var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: Selection of extractant for metal bioavailability. Journal of Hazardous Materials, 136(2), 371–378.

  • Gupta, N., Khan, D. K., & Santra, S. C. (2012). Heavy metal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environmental Monitoring and Assessment, 184(11), 6673–6682.

    CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110.

    Google Scholar 

  • Holm, P. E., Rootzen, H., Borggaard, O. K., & M⊘ berg, J. P., & Christensen, T. H. (2003). Correlation of cadmium distribution coefficients to soil characteristics. Journal of Environmental Quality, 32(1), 138–145.

    CAS  Google Scholar 

  • Hu, J., Wu, F., Wu, S., Cao, Z., Lin, X., & Wong, M. H. (2013). Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere, 91(4), 455–461.

    CAS  Google Scholar 

  • Ismail, A., Riaz, M., Akhtar, S., Goodwill, J. E., & Sun, J. (2019). Heavy metals in milk: Global prevalence and health risk assessment. Toxin Reviews, 38(1), 1–12.

    CAS  Google Scholar 

  • Jan, F. A., Ishaq, M., Khan, S., Ihsanullah, I., Ahmad, I., & Shakirullah, M. (2010). A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). Journal of Hazardous Materials, 179(1–3), 612–621.

    CAS  Google Scholar 

  • Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environmental Pollution, 168, 44–53.

    CAS  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives. (1999). Toxicological evaluation of certain food additives. ILSI Press International.

    Google Scholar 

  • Jung, M. C., & Thornton, I. (1997). Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb/Zn mine in Korea. Science of the Total Environment, 198(2), 105–121.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer Science & Business Media.

  • Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169(1–4), 101–123.

    CAS  Google Scholar 

  • Kamani, H., Ashrafi, S. D., Isazadeh, S., Jaafari, J., Hoseini, M., Mostafapour, F. K., & Mahvi, A. H. (2015). Heavy metal contamination in street dusts with various land uses in Zahedan, Iran. Bulletin of environmental contamination and toxicology, 94(3), 382–386.

    Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin Peloponnese Greece. Geoderma, 221–222, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Moore, F., Ansari, M., Mehr, M. R., Kaabi, H., & Kermani, M. (2015). Macronutrients and trace metals in soil and food crops of Isfahan Province. Iran. Environmental Monitoring and Assessment, 187(1), 4113.

    Google Scholar 

  • Khan, A., Khan, S., Alam, M., Khan, M. A., Aamir, M., Qamar, Z., & Perveen, S. (2016). Toxic metal interactions affect the bioaccumulation and dietary intake of macro-and micro-nutrients. Chemosphere, 146, 121–128.

    CAS  Google Scholar 

  • Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., & Wang, T. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458.

    CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China. Environmental Pollution, 152(3), 686–692.

    CAS  Google Scholar 

  • Khan, S., Rehman, S., Khan, A. Z., Khan, M. A., & Shah, M. T. (2010). Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73(7), 1820–1827.

    CAS  Google Scholar 

  • Khuzestan Meteorological Organization. (2016). Iran Meteorological Organization, Ministry of Roads and Urban Development. http//:37.32.40.3/.

  • Liu, Z., He, X., Chen, W., Yuan, F., Yan, K., & Tao, D. (2009). Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. Journal of Hazardous Materials, 169(1–3), 170–175.

    CAS  Google Scholar 

  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339(1–3), 153–166.

    CAS  Google Scholar 

  • Lui, W. X., Li, H. H., Li, S. R., & Wang, Y. W. (2006). Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76(1), 163–170.

    CAS  Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530.

    CAS  Google Scholar 

  • Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore. Pakistan. Arabian Journal of Chemistry, 7(1), 91–99.

    CAS  Google Scholar 

  • Marcussen, H., Holm, P. E., Strobel, B. W., & Hansen, H. C. B. (2009). Nickel sorption to goethite and montmorillonite in presence of citrate. Environmental Science & Technology, 43(4), 1122–1127.

    CAS  Google Scholar 

  • Metson, A. J. (1961). NZCSIR Soils Bull.

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Google Scholar 

  • Mohiuddin, K. M., Ogawa, Y. Z. H. M., Zakir, H. M., Otomo, K., & Shikazono, N. (2011). Heavy metals contamination in water and sediments of an urban river in a developing country. International Journal of Environmental Science & Technology, 8(4), 723–736.

    CAS  Google Scholar 

  • Moore, F., & Keshavarzi, B. (2014). Medical geology of Khuzestan Province (Phase 1). Iran Environmental Protection Agency (EPA), Khuzestan province: Internal Report.

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343.

    CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216.

    CAS  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

    CAS  Google Scholar 

  • Osma, E., Serin, M., Leblebici, Z., & Aksoy, A. (2012). Heavy metals accumulation in some vegetables and soils in Istanbul. Ekoloji, 21(82), 1–8.

    CAS  Google Scholar 

  • Ping, L. I. U., Zhao, H. J., Wang, L. L., Liu, Z. H., Wei, J. L., Wang, Y. Q., & Zhang, Y. F. (2011). Analysis of heavy metal sources for vegetable soils from Shandong Province. China. Agricultural Sciences in China, 10(1), 109–119.

    Google Scholar 

  • Qureshi, A. S., Hussain, M. I., Ismail, S., & Khan, Q. M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54–61.

    CAS  Google Scholar 

  • Rastegari Mehr, M., Keshavarzi, B., Moore, F., Sacchi, E., Lahijanzadeh, A. R., Eydivand, S., & Rostami, S. (2016). Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Human and Ecological Risk Assessment: An International Journal, 22(8), 1726–1748.

    CAS  Google Scholar 

  • Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and plant analysis laboratory manual. ICARDA.

  • Schofield, R. K. (1950). Effect of pH on electric charges carried by clay particles. Journal of Soil Science, 1(1), 1–8.

    Google Scholar 

  • SEPA. (2005). The limits of pollutants in food. State Environmental Protection Administration, China. GB2762e2005.

  • Sulaivany, R. O. H., & Al-Mezori, H. A. M. (2007). Heavy metals concentration in selected vegetables grown in Dohuk City, Kurdistan region, Iraq. WIT Transactions on the Built Environment, 94.

  • Sulkowski, M., & Hirner, A. V. (2006). Element fractionation by sequential extraction in a soil with high carbonate content. Applied Geochemistry, 21(1), 16–28.

    CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui. Northeast China. Chemosphere, 92(5), 517–523.

    CAS  Google Scholar 

  • United State, Environmental Protection Agency, December. (2006). Region 9, Preliminary remediation goal. http://www.epa.gov/region09/waste/sfind/prg.2002.

  • ur Rehman, K., Bukhari, S. M., Andleeb, S., Mahmood, A., Erinle, K. O., Naeem, M. M., & Imran, Q. (2019). Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: the particular case of Sahiwal district in Pakistan. Agricultural Water Management, 226, 105816.

  • US-EPA, United States, Environmental Protection Agency, August. (2012). Summary of maximum allowable concentrations of chemical constituents in uncontaminated soil used as fill material at regulated fill operations (35 Ill. Adm. Code 1100.Subpart F), https://www.epa.state.il.us/land/ccdd/new-max-allowable-concentrations-table.pdf.

  • Vitosh, M. L., Warncke, D. D., & Lucas, R. E. (1994). Secondary and Micronutrients for vegetables and field crops. Department of Crop and Soil Sciences, Michigan State University Extension, E-486.

  • Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA, 125, 200–205.

    CAS  Google Scholar 

  • World Health Organization (WHO). (1982). Toxicological Evaluation of Certain Food Additives, Joint FAO/WHO Expert Committee on Food Additives, WHO Food Additive Series No. 683, World Health Organization, Geneva.

  • Xu, X., Zhao, Y., Zhao, X., Wang, Y., & Deng, W. (2014). Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicology and Environmental Safety, 108, 161–167.

    CAS  Google Scholar 

  • Yao, Q., Wang, X., Jian, H., Chen, H., & Yu, Z. (2015). Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. International Journal of Environmental Research and Public Health, 12(6), 6725–6744.

    CAS  Google Scholar 

  • Yong, L. I. U., Huifeng, W. A. N. G., Xiaoting, L. I., & Jinchang, L. I. (2015). Heavy metal contamination of agricultural soils in Taiyuan. China. Pedosphere, 25(6), 901–909.

    Google Scholar 

  • Zhao, K., Zhang, W., Zhou, L., Liu, X., Xu, J., & Huang, P. (2009). Modeling transfer of heavy metals in soil–rice system and their risk assessment in paddy fields. Environmental Earth Sciences, 59(3), 519–527.

    CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help of the Bandar Imam Petrochemical Complex, the Khuzestan environmental protection office, the Research Committee, and Medical Geology Center of Shiraz University for logistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Keshavarzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Keshavarzi, B., Moore, F. et al. Macronutrients, trace metals and health risk assessment in agricultural soil and edible plants of Mahshahr City, Iran. Environ Monit Assess 194, 131 (2022). https://doi.org/10.1007/s10661-021-09646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09646-2

Keywords

Navigation