Skip to main content

Advertisement

Log in

Land use/land cover and climate change interaction in the derived savannah region of Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The interaction of land use/land cover (LULC) and climate change, to a large extent, involves anthropogenic activities. This study was carried out in the derived savannah of Nigeria, a delicate, transition ecological zone between the rainforest and savanna zones where the interaction of LULC and climate change could be well appreciated. Using the remote sensing and GIS, Land Change Modeler (LCM), and multivariate geostatistics tools, the study evaluated coupled interaction between LULC and climate change and assessed the changes in the land use/land cover patterns for the periods 1972, 1986, 2002, and 2019. It also evaluated the present (1941–2019) and future (2020–2050) variability in rainfall patterns and made an attempt to predict the interaction between LULC and climate change in future climate. The results suggest that the urban (built-up) area, waterbody, woodland, and farmland experienced a rapid increase of about 2,400%, 583%, 277%, and 32%, respectively, while the forest cover lost about 39% between 1972 and 2019. Furthermore, the study predicted 46% and 29% reduction in the forested area between 2002 and 2050 and 2019 and 2050, respectively. The study concludes that rainfall will be the major driver of LULC change within the study area under a future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

There are no external data used in this research.

Code availability

Not applicable.

References

  • Abiodun, B. J., Lawal, K. A., Salami, A. T., & Abatan, A. A. (2012). Potential influences of global warming on future climate and extreme events in Nigeria. Regional Environmental Change, 1-15. https://doi.org/10.1007/s10113-012-0381-7

  • Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Disaster Management, 14(3), 1–17.

    Google Scholar 

  • Amekudzi, L. K., Yamba, E. I., Ernest, K. P., Asare, O., Aryee, J., Baidu, M., & Codjoe, S. N. A. (2015). Variabilities in rainfall onset, cessation and length of rainy season for the various agro-ecological zones of Ghana. Climate, 3, 416–434. https://doi.org/10.3390/cli3020416

    Article  Google Scholar 

  • Armenteras, D., Gibbes, C., Vivacqua, C. A., Espinosa, J. S., Duleba, W., Goncalves, F., & Castro, C. (2016). Interactions between climate, land use and vegetation fire occurrences in El Salvador. Atmosphere, 7(26). https://doi.org/10.3390/atmos7020026

  • Armston, J. D., Danaher, T. J., Goulevitch, B. M., & Byrne, M. I. (2002). Geometric correction of Landsat MSS, TM, and ETM+ imagery for mapping of woody vegetation cover and change detection in Queensland. In: Proc. 11th Australasian Remote Sensing and Photogrammetry Conference, Brisbane.

  • Ayeni A. O., Cho, M. A., Ramoelo, A., Mathieu, R., Soneye, A. S. O., & Adegoke, J. O. (2013). Could local perceptions of water stress be explained by LULCC? Geoinfor Geostat: An Overview, S1. https://doi.org/10.4172/2327-4581.S1-001

  • Ayeni A., Kapangaziwiri, E., Soneye, A., Vezhapparambu, S. & Adegoke, J. (2013). Assessing the impact of land use/land cover and climate changes on water stress in the derived savanna. In: In Eva Bogh et al. (eds), Climate and land surface changes in hydrology. Proceedings of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013. IAHS Publ. 359, 92–98. ISBN Number: 978–1–907161–37–7.

  • Ayeni, A. O., Kapangaziwiri, E., Soneye, A. S. O., & Engelbrecht, F. (2015). Assessing the impact of global changes on the surface water resources of Southwestern Nigeria. Hydrological Sciences Journal (HSJ), 60(11 & 12), 1956–1971.

    Google Scholar 

  • Ayeni, A. O., Cho, M. A., Mathieu, R., & Adegoke, J. O. (2016). The local experts’ perception of environmental change and its impacts on surface water in Southwestern Nigeria. Environmental Development, 17, 33–47.

    Google Scholar 

  • Badjana, H. M., Olofsson, P., Woodcock, C., Helmschrot, E. J., Wala, K. P., & Akpagan, K. (2017). Mapping and estimating land change between 2001 and 2013 in a heterogeneous landscape in West Africa: Loss of forestlands and capacity building opportunities. International Journal of Applied Earth Observation and Geoinformation, 63, 15–23.

    Google Scholar 

  • Belaroui, K., Djediai, H., & Megdad, H. (2014). The influence of soil, hydrology, vegetation and climate on desertification in El-Bayadh region (Algeria). Desalination and Water Treatment, 52(10–12), 2144–2150.

    Google Scholar 

  • Bhowmik, A. K. (2012). A comparison of Bangladesh climate surfaces from the geostatistical point of view. ISRN Meteorology. https://doi.org/10.5402/2012/353408

    Article  Google Scholar 

  • Bhowmik, A. K. (2013). Temporal patterns of the two-dimensional spatial trends in summer temperature and monsoon precipitation of Bangladesh. ISRN Atmospheric Sciences. https://doi.org/10.1155/2013/148538

    Article  Google Scholar 

  • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., & Pyne, S. J. (2009). Fires in the earth system. Science, 324, 481–484.

    CAS  Google Scholar 

  • Briner, S., Elkin, C., Huber, R., & Grêt-Regamey, A. (2012). Assessing the impacts of economic and climate changes on land-use in mountain regions: A spatial dynamic modeling approach. Agriculture, Ecosystems & Environment, 149, 50–63.

    Google Scholar 

  • Bullock, P., Le Houerou, H., Hoffman, M. T., Rounsevell, M., Sehgal, J., Varallyay, G., Aidoud, A., Balling, R., Long-Jun, C., & Goulding, K. W. T. (1996). Land degradation and desertification. In R. T. Watson, R. H. Moss, & M. C. Zinyowera (Eds.), Climate change 1995. Impacts, adaptations and mitigation of climate change: Scientific and technical analyses. Cambridge University Press (CUP) Cambridge. pp. 173–189

  • Campbell, D. J. (1998). Towards an analytical framework for land use change. In L. Bergstrom & H. Kirschmann (Eds.), Carbon and nutrient dynamics in natural and tropical agricultural ecosystems (pp. 281–301). CAB International.

    Google Scholar 

  • Campbell, J. B. & Wynne, R. H. (2011). Introduction to remote sensing (5th edition, pp.667.). New York: The Guilford Press.

  • Cook, K. H., & Vizy, E. K. (2006). Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations. Journal of Climate, 19, 3681–3703.

    Google Scholar 

  • Dale, V. H. (1997). The relationship between land use change and climate change: Ecological applications. Ecological Society of America, 7(3), 753–769.

    Google Scholar 

  • de Vries, C., Danaher, T., Denham, R., Scarth, P., & Phinn, S. (2007). An operational radiometric calibration procedure for the Landsat sensors based on pseudo invariant target sites. Remote Sensing of Environment, 107(3), 414–429.

    Google Scholar 

  • Deng, X., Zhao, C., & Yan H. (2013), Systematic modeling of impacts of land use and land cover changes on regional climate: A review. Advances in Meteorology, 1–11. https://doi.org/10.1155/2013/317678

  • Eastman, J. R. & Laney, R. M. (2002). Bayesian soft classification for sub-pixel analysis: A critical evaluation. Photogrammetric Engineering and Remote Sensing68(11), 1149 – 1154.

  • Eastman, R. (2012). IDRISI Selva manual guide to GIS and image processing (17, Pp 332). Worcester, MA, USA: Clark University.

  • Ewel, K. C. (2001). Natural resource management: The need for interdisciplinary collaboration. Ecosystems, 4, 716–722.

    Google Scholar 

  • Fan, X., Ma, Z., Yang, Q., Han, Y., & Mahmood, R. (2015). Land use/land cover changes and regional climate over the loess plateau during 2001–2009, Part II: Interrelationship from observations. Climate Change, 129(3), 441–455. https://doi.org/10.1007/s10584-014-1068-5fv

    Article  Google Scholar 

  • FAO. (2010). Global forest resources assessment 2010: Main report. Food and Agriculture Organization of the United Nations.

  • Fasona, M. J., Akintuyi, A. O., Udofia, S. K., Akoso, T. M., Ariori, A. N., Adeonipekun, P. A., Agboola, O. O., Ogunsanwo, G. E., Ogundipe, O. T., Soneye, A. O., & Omojola, A. S. (2018). Deforestation and land-cover changes in forest reserves of Southwest, Nigeria. Lagos Journal of Geo-Information Sciences (LJGIS), 5, 67–87.

    Google Scholar 

  • Fasona, M.J., & Omojola, A.S. (2005). Climate change, human security and communal clashes in Nigeria. Proceeding of International Workshop on Human Security and Climate Change, Holmen Fjord Hotel, Asker, near Oslo, 22–23 June 2005. Accessed on 10 Aug 2007, Retrieved from: www.gechs.org/activities/holmen/Fasona_Omojola.pdf

  • Federal Ministry of Environment (FME). (2004). National biodiversity strategy and action plan (pp 1–144). Abuja-Nigeria: FME.

  • Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68, 643–653.

    Google Scholar 

  • Geist, H. J., & Lambin, E. F. (2004). Dynamic causal patterns of desertification. BioScience, 54(9), 817–829.

    Google Scholar 

  • Herrmann, S. M., & Hutchinson, C. F. (2005). The changing contexts of the desertification debate. Journal of Arid Environments, 63(3), 538–555.

    Google Scholar 

  • Hewitson, B. C., & Crane, R. G. (1996). Climate downscaling: Techniques and application. Climate Research, 7, 85–95.

    Google Scholar 

  • Huang, S., & Kong, J. (2016). Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter forest region of China. ISPRS International Journal of Geo-Information, 5, 158. https://doi.org/10.3390/ijgi5090158

    Article  Google Scholar 

  • Johnston, C. A. (2013). Wetland losses due to row crop expansion in the Dakota Prairie Pothole region. Wetlands, 33, 175–182.

    Google Scholar 

  • Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., et al. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences U. S. A., 105(30), 10302–10307.

    CAS  Google Scholar 

  • Kinzig, A. P. (2001). Bridging disciplinary divides to address environmental and intellectual challenges. Ecosystems, 4, 709–715.

    Google Scholar 

  • Kirtiloglu, O. S., Orhan, O., & Ekercin, S. (2016). A map mash-up application: Investigation the temporal effects of climate change on Salt Lake Basin. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 221-2260. https://doi.org/10.5194/isprs-archives-XLI-B4-221-2016

  • Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., M. Kimoto, M., Meehl, G. A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G., & Wang, H. I. (2013). Near-term climate change: Projections and predictability. In T. F. Stocker, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK: Cambridge University Press.

  • Laingen, C. (2015). Measuring cropland change: A cautionary tale. Papers in Applied Geography, 1(1), 65–72. https://doi.org/10.1080/23754931.2015.1009305

    Article  Google Scholar 

  • Lark, T. J., Salmon, J. M., & Gibbs, H. K., (2015). Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmetal Research Letter, 10(4), https://doi.org/10.1088/1748-9326/10/4/044003

  • Lark, T. L., Mueller, R. M., Johnson, D. M., & Gibbs, H. K. (2017). Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: Cautions and recommendations. International Journal of Applied Earth Observation and Geoinformation, 62, 224–235.

    Google Scholar 

  • Li, Z., Deng, X., Yin, F., & Yang, C. (2015). Analysis of climate and land use changes impacts on land degradation in the North China Plain. Advances in Meteorology. https://doi.org/10.1155/2015/976370

    Article  Google Scholar 

  • Matthews, E. (1983). Global vegetation and land use: New high resolution data bases for climate studies. Journal of Climate and Applied Meteorology, 22, 474–487.

    Google Scholar 

  • Meehl, G. A., Covey, C., McAvaney, B., Latif, M., & Stouffer, R. J. (2005). Overview of the coupled model intercomparison project. Bulletin of the American Meteorological Society, 86, 89–93.

    Google Scholar 

  • Messina, J., Adhikari, U., Carroll, J., Chikowo, R., DeVisser, M., Dodge, L., Fan, P., Langley, S., Lin, S., Mensope, N., Moore, N., Murray, S., Nawyn, S., Nejadhashemi, A. Olson, J., Smith, A., & Snapp, S. (2014). Population growth, climate change and pressure on the land – Eastern and Southern Africa, 99pp. ISBN 978 – 0–9903005–0–2

  • Mutiibwa, D., Kilic, A., & Irmak, S. (2014). The effect of land cover/land use changes on the regional climate of the USA high plains. Climate, 2(3), 153–167. http://www.mdpi.com/journal/climate

  • National Bureau of Statistics (NBS). (2006). Federal Republic of Nigeria: 2006 population census. Pp10. http://www.nigerianstat.gov.ng

  • NIMET. (2012). Nigerian climate review edit. Nigerian Meteorological Agency (NIMET) http://www.nimet.gov.ng/sites/default/files/publications/2012%20NIGERIAN%20CLIMATE%20REVIEW%20EDIT.docx

  • Odjugo, P. A. O. (2011). Climate change: Evidence, impacts and adaptation strategies in Nigeria. In A. T. Salami & O. I. Orimoogunje (Eds.), Environmental research and challenges of sustainable development in Nigeria (pp. 142–164). Obafemi Awolowo University Press.

    Google Scholar 

  • Ogunrayi, O. A., Akinseye, F. M., Goldberg, V., & Bernhofer, C. (2016). Descriptive analysis of rainfall and temperature trends over Akure Nigeria. Journal of Geography and Regional Planning, 9(11), 195–202.

    Google Scholar 

  • Oguntunde, P. G., Abiodun, B. J., Gunnar, & L,. (2011). Rainfall trends in Nigeria, 1901–2000. Journal of Hydrology, 411, 207–218. https://doi.org/10.1016/j.jhydrol.2011.09.037

    Article  Google Scholar 

  • Oguntunde, P. G., Abiodun, B. J., & Gunnar, L. (2012). Spatial and temporal temperature trends in Nigeria, 1901–2000. Meteorology and Atmospheric Physics, 118, 95–105.

    Google Scholar 

  • Olagunju, T. E. (2015). Drought, desertification and the Nigerian environment: A review. Journal of Ecology and the Natural Environment, 7(7), 196–209.

    Google Scholar 

  • Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wires Climate Change, 5, 317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Olson, J. M., Alagarswamy, G., Andresen, J. A., Campbell, D. J., Davis, A. Y., Gef, J., Huebner, M., Lofgren, B. M., Lusch, D. P., Moore, N. J., Pijanowski, B. C., Qi, J., Thornton, P. K., Torbick, N. M., & Wang, J. (2008). Integrating diverse methods to understand climate–land interactions in East Africa. Geoforum, 39, 898–911.

    Google Scholar 

  • Omotoso, F. (2009). Administrative problems of state creation in Ekiti State, Nigeria. African Journal of Political Science and International Relations3(3), 107–116. Retrieved from http://www.academicjournals.org/article/article1379786015_Omotosho.pdf

  • Orhan, O., Ekercin, S., & Dadaser-Celik, F. (2014). Use of Landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin Area, Turkey. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/142939

  • Ostberg, S., Schaphoff, S., Lucht, W., & Gerten, D. (2015). Three centuries of dual pressure from land use and climate change on the biosphere. Environmental Research Letter10, 044011.

  • Pielke, R. A., Sr., Adegoke, J., Beltran-Przekurat, A., Hiemstra, C. A., Lin, J., Nair, U. S., & Nobis, T. E. (2007). An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B, 587–601.

    Google Scholar 

  • Pielke, R. A. (1997). The role of land cover as a driving for regional climate change. In S.J. Hassol, & J. Katzenberger (Eds.), Scaling from site-specific observations to global model grids (pp.89–92). Proceeding of an Aspen Global Change Institute Workshop 7–17 July 1997, Elements of Change series, AGCI.

  • Pielke, R. A., & Avissar, R. (1990). Influence of landscape structure on local and regional climate. Landscape Ecology, 4(2–3), 133–155.

    Google Scholar 

  • Pitman, A., Pielke, R., Sr., Avissar, R., Claussen, M., Gash, J., & Dolman, H. (2000). The role of the land surface in weather and climate: Does the land surface matter? IGBP Newsletter, 39, 4–11.

    Google Scholar 

  • Pontius, R. G., Jr. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66(8), 1011–1016.

    Google Scholar 

  • Rao, B., & D. Rao D., & Rao, V. B. (2004). Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophysical Research Letters, 31, L14103.

    Google Scholar 

  • Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., & Weyant, J. (2013). Bioenergy in energy transformation and climate management. Climate Change, 123(4), 77–93.

    Google Scholar 

  • Salinger, M. J. (2007). Agriculture’s influence on climate during the Holocene. Agricultural and Forest Meteorology, 142(2–4), 96–102.

    Google Scholar 

  • Sathiyamoorthy, V. (2005). Large scale reduction in the size of the tropical easterly jet. Geophysical Research Letters, 2005, 32.

    Google Scholar 

  • Schirpke, U., Leitinger, G., Tasser, E., Schermer, M., Steinbacher, M., & Tappeiner, U. (2013). Multiple ecosystem services of a changing Alpine landscape: Past, present and future. Int. J. Biodivers. Sci. Ecosystem Services Management, 9, 123–135.

    Google Scholar 

  • Schirpke, U., Kohler, M., Leitinger, G., Fontana, V., Tasser, E., & U. Tappeiner, U. (2017). Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 26(A), 79–94.

  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate. Earth-Science Reviews, 99(3–4), 125–161.

    CAS  Google Scholar 

  • Sharma, S. & Singh, P. K. (2017). Long term spatiotemporal variability in rainfall trends over the state of Jharkhand, India. Climate, 5, 18. https://doi.org/10.3390/cli5010018

  • Shi, X., Wang, W., & Shi, W. (2016). Progress on quantitative assessment of the impacts of climate change and human activities on cropland change. Journal of Geographical Sciences, 26(3), 339–354.

    Google Scholar 

  • Sivakumar, M. V. K. (2007). Interactions between climate and desertification. Agricultural and Forest Meteorology, 142(2–4), 143–155.

    Google Scholar 

  • Smith, M. J., Goodchild, M. F., & Longley, P. A. (2007). Geospatial analysis: Comprehensive guide to principles, techniques and software tools (2nd edition). https://doi.org/10.1111/j.1467-9671.2008.01122.x

  • Sohl, T. L., Sleeter, B. M., Sayler, K. L., Bouchard, M. A., Reker, R. R., Bennett, S. L., Sleeter, R. R., Kanengieter, R. L., & Zhu, Z. (2012). Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States. Agriculture, Ecosystems and Environment, 153, 1–15.

    Google Scholar 

  • Tadross, M., Suarez, P., Lotsch, A., Hachigonta, S., Mdoka, M., Unganai, L., et al. (2009). Growing-season rainfall and scenarios of future change in southeast Africa: Implications for cultivating maize. Climate Research, 40, 147–161.

    Google Scholar 

  • Tucker, C. J. (2005). Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environmental Change, 15(4), 394–404.

    Google Scholar 

  • Tucker, C. J., Grant, D. M., & Dykstra, J. D. (2004). NASA’s global orthorectified Landsat data set. Photogrammetric Engineering & Remote Sensing, 70(3), 313–322.

    Google Scholar 

  • Wang, Y., Woodcock, C. E., Buermann, W., Stenberg, P., Voipio, P., Smolander, H., et al. (2004). Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91, 114–127.

    Google Scholar 

  • Wang, S., & Davidson, A. (2007). Impact of climate variations on surface albedo of a temperate grassland. Agricultural and Forest Meteorology, 142(2–4), 133–142.

    Google Scholar 

  • Wright, C. K., Larson, B., Lark, T. J., & Gibbs, H. K. (2017). Recent grassland losses are concentrated around U.S. ethanol refineries. Environmental Research Letter, 12(4), 044001. https://doi.org/10.1088/1748-9326/aa6446

  • Wright, C. K., Wimberly, M. C., et al. (2013). Reply to Kline: Cropland data layer provides a valid assessment of recent grassland conversion in the Western Corn Belt. Proceedings of the National Academy of Sciences, 110(31), E2864. https://doi.org/10.1073/pnas.1307594110

    Article  Google Scholar 

  • Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., & Comerford, N. B. (2014). Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982.

    CAS  Google Scholar 

  • Yaqian He, Y., Timothy, A., Warner, T. A., McNeil, B. E., & Lee, E. (2018). Reducing uncertainties in applying remotely sensed land use and land cover maps in land-atmosphere interaction: Identifying change in space and time. Remote Sensing, 10(4), 506. https://doi.org/10.3390/rs10040506.

    Article  Google Scholar 

  • Zeng, N., Neelin, J. D., Lau, K. M., & Tucker, C. J. (1999). Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 1537–1540.

    CAS  Google Scholar 

  • Zhang, Y., Song, C., Zhang, K., Cheng, X., Band, L. E., & Zhang, Q. (2014). Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. Journal of Geophysical Research. Biogeosciences, 119, 1092–1109.

    Google Scholar 

  • Zheng, X., & Eltahir, E. A. B. (1997). The response to deforestation and desertification in a model of West African Monsoons. Geophysical Research Letters, 24(2), 155–158.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged Department of Geography, University of Lagos, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinlabi O. Akintuyi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintuyi, A.O., Fasona, M.J., Ayeni, A.O. et al. Land use/land cover and climate change interaction in the derived savannah region of Nigeria. Environ Monit Assess 193, 848 (2021). https://doi.org/10.1007/s10661-021-09642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09642-6

Keywords

Navigation