Skip to main content

Comparison of benthic macroinvertebrate assessment methods along a salinity gradient in headwater streams

Abstract

Benthic macroinvertebrate community assessments are used commonly to characterize aquatic systems and increasingly for identifying their impairment caused by myriad stressors. Yet sampling and enumeration methods vary, and research is needed to compare their abilities to detect macroinvertebrate community responses to specific water quality variables. A common assessment method, rapid bioassessment, uses subsampling procedures to identify a fixed number of individual organisms regardless of total sample abundance. In contrast, full-enumeration assessments typically allow for expanded community characterization resulting from higher numbers of identified organisms within a collected sample. Here, we compared these two sampling and enumeration methods and their abilities to detect benthic macroinvertebrate response to freshwater salinization, a common stressor of streams worldwide. We applied both methods in headwater streams along a salinity gradient within the coal-mining region of central Appalachia USA. Metrics of taxonomic richness, community composition, and trophic function differed between the methods, yet most metrics exhibiting significant response to SC for full-enumeration samples also did for rapid bioassessment samples. However, full-enumeration yielded taxonomic-based metrics consistently more responsive to the salinization gradient. Full-enumeration assessments may potentially provide more complete characterization of macroinvertebrate communities and their response to increased salinization, whereas the more cost-effective and widely employed rapid bioassessment method can detect community alterations along the full salinity gradient. These findings can inform decisions regarding such tradeoffs for assessments of freshwater salinization in headwater streams and highlight the need for similar research of sampling and enumeration methodology in other aquatic systems and for other stressors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

The benthic macroinvertebrate monitoring data for this study are available as Tables A-10 through A-13 in Pence, R.A. 2019. Comparison of Quantitative and Semi-Quantitative Assessments of Benthic Macroinvertebrate Community Response to Elevated Salinity in Central Appalachian Coalfield Streams. M.S. Thesis. Virginia Tech, Blacksburg. https://vtechworks.lib.vt.edu/handle/10919/86787

Code availability

Custom R code was developed for this research project and is available upon reasonable request.

References

  • Arscott, D. B., Jackson, J. K., & Kratzer, E. B. (2006). Role of rarity and taxonomic resolution in a regional and spatial analysis of stream macroinvertebrates. Journal of the North American Benthological Society, 25, 977–997. https://doi.org/10.1899/0887-3593(2006)025[0977:RORATR]2.0.CO;2

    Article  Google Scholar 

  • Barbour, M. T., Gerrtisen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates, and fish (2nd ed.). USEPA.

    Google Scholar 

  • Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., et al. (2012). Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 18, 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009

    Article  Google Scholar 

  • Boehme, E. A., Zipper, C. E., Schoenholtz, S. H., Soucek, D. J., & Timpano, A. J. (2016). Temporal dynamics of benthic macroinvertebrate communities and their response to elevated specific conductance in Appalachian coalfield headwater streams. Ecological Indicators, 64, 171–180. https://doi.org/10.1016/j.ecolind.2015.12.020

    Article  Google Scholar 

  • Bryant, G., McPhilliamy, S., & Childers, H. (2002). A survey of the water quality of streams in the primary region of mountaintop/valley fill coal mining, October 1999 to January 2001. Mountaintop mining/valley fill programmatic environmental impact statement. Region 3, US Environmental Protection Agency, Philadelphia, Pennsylvania.

  • Burton, J., & Gerritsen, J. (2003). A stream condition index for Virginia non-coastal streams. Report prepared for Virginia DEQ and US EPA by Tetra-Tech Inc.

    Google Scholar 

  • Buss, D. F., & Borges, E. L. (2008). Application of rapid bioassessment protocols (RBP) for benthic macroinvertebrates in Brazil: Comparison between sampling techniques and mesh sizes. Neotropical Ecology, 37, 288–295. https://doi.org/10.1590/S1519-566X2008000300007

    Article  Google Scholar 

  • Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., & Schulz, C.-J. (2013). Salinisation of rivers: An urgent ecological issue. Environmental Pollution., 173, 157–167. https://doi.org/10.1016/j.envpol.2012.10.011

    Article  CAS  Google Scholar 

  • Cao, Y., & Hawkins, C. P. (2005). Simulating biological impairment to evaluate the accuracy of ecological indicators. Journal of Applied Ecology, 42, 954–965. https://doi.org/10.1111/j.1365-2664.2005.01075.x

    Article  Google Scholar 

  • Cao, Y., Williams, D. D., & Williams, N. E. (1998). How important are rare species in aquatic community ecology and bioassessment? Limnology and Oceanography, 43, 1403–1409. https://doi.org/10.4319/lo.1998.43.7.1403

    Article  Google Scholar 

  • Cianciolo, T. R., McLaughlin, D. L., Zipper, C. E., Timpano, A. J., Soucek, D. J., & Schoenholtz, S. H. (2020). Impacts to water quality and biota persist in mining-influenced Appalachian streams. Science of the Total Environment, 717, 137216. https://doi.org/10.1016/j.scitotenv.2020.137216

    Article  CAS  Google Scholar 

  • Courtemanch, D. L. (1996). Commentary on the subsampling procedures used for rapid bioassessments. Journal of the North American Benthological Society, 15, 381–385. https://doi.org/10.2307/1467284

    Article  Google Scholar 

  • Davies, A. (2001). The use and limits of various methods of sampling and interpretation of benthic macro-invertebrates. Journal of Limnology, 60(1s), 1–6.

    Article  Google Scholar 

  • Doberstein, C. P., Karr, J. R., & Conquest, L. L. (2000). The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biology, 44, 355–371. https://doi.org/10.1046/j.1365-2427.2000.00575.x

    Article  Google Scholar 

  • Drover, D. R., Schoenholtz, S. H., Soucek, D. J., & Zipper, C. E. (2020). Multiple stressors influence benthic macroinvertebrate communities in central Appalachian coalfield streams. Hydrobiologia, 847, 191–205. https://doi.org/10.1007/s10750-019-04081-4

    Article  CAS  Google Scholar 

  • Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12(1), 42–58. https://doi.org/10.2307/1411

    Article  Google Scholar 

  • Ghani, W. M., Rawi, C. S., Hamid, S. A., & Al-Shami, S. A. (2016). Efficiency of different sampling tools for aquatic macroinvertebrate collections in Malaysian streams. Tropical Life Sciences Research, 27(1), 115–133.

    Google Scholar 

  • Gillies, C. L., Hose, G. C., & Turak, E. (2009). What do qualitative rapid bioassessment collections of macroinvertebrates represent? A comparison with extensive quantitative sampling. Environmental Monitoring and Assessment, 149, 99–112. https://doi.org/10.1007/s10661-008-0186-9

    Article  CAS  Google Scholar 

  • Governor, H., Krometis, L. A. H., & Hession, W. C. (2017). Invertebrate-based water quality impairments and associated stressors identified through the US Clean Water Act. Environmental Management, 60, 598–614. https://doi.org/10.1007/s00267-017-0907-3

    Article  Google Scholar 

  • Hartman, K. J., Kaller, M. D., Howell, J. W., & Sweka, J. A. (2005). How much do valley fills influence headwater streams? Hydrobiologia, 532, 91–102. https://doi.org/10.1007/s10750-004-9019-1

    Article  CAS  Google Scholar 

  • Herlihy, A. T., Sifneos, J. C., Hughes, R. M., Peck, D. V., & Mitchell, R. M. (2020). The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecological Indicators, 112, 105958

  • Hothorn., & Hornik. (2018). exactRankTests: Exact distributions for rank and permutation tests. R package version 0.8–31. https://CRAN.R-project.org/package=exactRankTests

  • Kaushal, S. S., Likens, G. E., Pace, M. L., Utz, R. M., Haq, S., Gorman, J., & Grese, M. (2018). Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences, 115, E574–E583. https://doi.org/10.1073/pnas.1711234115

    Article  CAS  Google Scholar 

  • Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Heino, J., Melo, A. S., & Callisto, M. (2020). Choice of field and laboratory methods affects the detection of anthropogenic disturbances using stream macroinvertebrate assemblages. Ecological Indicators, 115, 106382.

  • Lindberg, T. T., Bernhardt, E. S., Vier, R., Helton, A. M., Merola, R. B., Vengosh, A., & Di Giulio, R. T. (2011). Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences, 108(52), 20929–20934. https://doi.org/10.1073/pnas.1112381108

    Article  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An introduction to the aquatic insects of North America. Dubuque: Kendall/Hunt.

  • Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub, N., Tanida, K., et al. (2007). Freshwater biomonitoring with macroinvertebrates in East Asia. Frontiers in Ecology and Environment, 5, 33–42. https://doi.org/10.1890/1540-9295(2007)5[33:FBWMIE]2.0.CO;2

    Article  Google Scholar 

  • Nichols, S. J., Barmuta, L. A., Chessman, B. C., Davies, P. E., & Dyer, F. J. (2017). The imperative need for nationally coordinated bioassessment of rivers and streams. Marine and Freshwater Research, 68, 599–613. https://doi.org/10.1071/MF15329

    Article  Google Scholar 

  • Connor, O., Á., Bradish, S., Reed, T., et al. (2004). A comparison of the efficacy of pond-net and box sampling methods in turloughs - Irish ephemeral aquatic systems. Hydrobiologia, 524, 133–144. https://doi.org/10.1023/B:HYDR.0000036128.83998.44

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125. https://doi.org/10.1111/j.1467-8306.1987.tb00149.x

    Article  Google Scholar 

  • Pericak, A. A., Thomas, C. J., Kroodsma, D. A., Wasson, M. F., Ross, M. R., Clinton, N. E., Campagna, D. J., Franklin, Y., Bernhardt, E. S., & Amos, J. F. (2018). Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PloS one, 13(7). https://doi.org/10.1371/journal.pone.0197758

  • Plafkin, J. L., Barbour, M. T., Porter, K. D., Gross, S. K., & Hughes, R. M. (1989). Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. USEPA.

    Google Scholar 

  • Pond, G. J., Passmore, M. E., Borsuk, F. A., Reynolds, L., & Rose, C. J. (2008). Downstream effects of mountaintop coal mining: Comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society, 27(3), 717–737. https://doi.org/10.1899/08-015.1

    Article  Google Scholar 

  • Pond, G. J. (2010). Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia, 641, 185–201. https://doi.org/10.1007/s10750-009-0081-6

    Article  Google Scholar 

  • Pond, G. J. (2012). Biodiversity loss in Appalachian headwater streams (Kentucky, USA): Plecoptera and Trichoptera communities. Hydrobiologia, 679, 97–117.

    Article  CAS  Google Scholar 

  • Pond, G. J., Passmore, M. E., Pointon, N. D., Felbinger, J. K., Walker, C. A., Krock, K. J. G., Fulton, J. B., & Nash, W. L. (2014). Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. Environmental Management, 54, 919–933. https://doi.org/10.1007/s00267-014-0319-6

    Article  Google Scholar 

  • R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Schäfer, R. B., Bundschuh, M., Rouch, D. A., Szöcs, E., Von Der Ohe, P. C., Pettigrove, V., Schulz, R., Nugegoda, D., & Kefford, B. J. (2012). Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Science of the Total Environment, 415, 69–78. https://doi.org/10.1016/j.scitotenv.2011.05.063

    Article  CAS  Google Scholar 

  • Silva, L. C. F., Vieira, L. C. G., Costa, D. A., Lima Filho, G. F., Vital, M. C. C., Carvalho, R. A., Silveira, A. V. T., & Oliveira, L. C. (2005). Qualitative and quantitative benthic macroinvertebrate samplers in Cerrado streams: A comparative approach. Acta Limnologica Brasiliensia, 17, 123–128.

    Google Scholar 

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectations for the ecological condition of streams: The concept of reference condition. Ecological Applications, 16, 1267–1276.

    Article  Google Scholar 

  • Storey, A. W., Edward, D. H. D., & Gazey, P. (1991). Surber and kick sampling: A comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia, 211, 111–121. https://doi.org/10.1007/BF00037367

    Article  Google Scholar 

  • Tetra Tech Inc. (2000). A stream condition index for West Virginia wadeable streams. Prepared for US EPA, Region 3. http://dep.wv.gov/wwe/watershed/bio_fish/documents/wvsci.pdf

  • Timpano, A. J., Schoenholtz, S. H., Soucek, D. J., & Zipper, C. E. (2015). Salinity as a limiting factor for biological condition in mining-influenced Central Appalachian headwater streams. Journal of the American Water Resources Association, 51(1), 240–250. https://doi.org/10.1111/jawr.12247

    Article  Google Scholar 

  • Timpano, A. J., Schoenholtz, S. H., Soucek, D. J., & Zipper, C. E. (2018a). Benthic macroinvertebrate community response to salinization in headwater streams in Appalachia USA over multiple years. Ecological Indicators, 91, 645–656. https://doi.org/10.1016/j.ecolind.2018.04.031

    Article  Google Scholar 

  • Timpano, A. J., Zipper, C. E., Soucek, D. J., & Schoenholtz, S. H. (2018b). Seasonal pattern of anthropogenic salinization in temperate forested headwater streams. Water Research, 133, 8–18. https://doi.org/10.1016/j.watres.2018.01.012

    Article  CAS  Google Scholar 

  • Tubić, B. P., Popović, N. Z., Raković, M. J., Petrović, A. S., Simić, V. M., & Paunović, M. M. (2017). Comparison of the effectiveness of kick and sweep hand net and Surber net sampling techniques used for collecting aquatic macroinvertebrate samples. Archives of Biological Sciences, 69, 233–238. https://doi.org/10.2298/ABS160622087T

    Article  Google Scholar 

  • USEPA. (2011). A field-based aquatic life benchmark for conductivity in central Appalachian streams. Office of Research and Development, National Center for Environmental Assessment, Washington, D.C.

  • Van Sickle, J., & Paulsen, S. G. (2008). Assessing the attributable risks, relative risks, and regional extents of aquatic stressors. Journal of the North American Benthological Association, 27, 920–931. https://doi.org/10.1899/07-152.1

    Article  Google Scholar 

  • VDEQ (Virginia Department of Environmental Quality). (2006). Using probabilistic monitoring data to validate the noncoastal Virginia stream condition index. VDEQ Technical Bulletin WQA/2006–001. Water Quality Monitoring and Assessment Programs, Richmond, Virginia. http://www.deq.virginia.gov/Portals/0/DEQ/Water/WaterQualityMonitoring/ProbabilisticMonitoring/scival.pdf

  • VDEQ. (2008). Biological monitoring program quality assurance project plan for wadeable streams and rivers. Virginia Department of Environmental Quality, Water Quality Monitoring and Assessment Programs, Richmond, Virginia.

  • Vinson, M. R., & Hawkins, C. P. (1996). Effects of sampling area and subsampling procedure on comparisons of taxa richness among streams. Journal of the North American Benthological Society, 15(3), 392–399. https://doi.org/10.2307/1467286

    Article  Google Scholar 

  • Vlek, H. E., Sporka, F., & Krno, I. (2006). Influence of macroinvertebrate sample size on bioassessment of streams. Hydrobiologia, 566, 523–542. https://doi.org/10.1007/978-1-4020-5493-8_35

    Article  Google Scholar 

  • Wiggins, G. B. (1996). Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press.

    Book  Google Scholar 

Download references

Funding

Support for this research was provided by the Powell River Project at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Cianciolo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pence, R.A., Cianciolo, T.R., Drover, D.R. et al. Comparison of benthic macroinvertebrate assessment methods along a salinity gradient in headwater streams. Environ Monit Assess 193, 765 (2021). https://doi.org/10.1007/s10661-021-09556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09556-3

Keywords

  • Salinization
  • Rapid bioassessment
  • Full enumeration
  • Coal mining