Skip to main content

Response of aquatic insects to an environmental gradient in Amazonian streams

Abstract

The increasing land use in the Amazon region has resulted in the widespread substitution of forest areas with pasture and bauxite mining. These land uses reduce the forest cover of streams and modify their characteristics, reducing the diversity of aquatic insect assemblages. In the present study, we aimed to identify the threshold of the assemblages of the larvae of insects of the orders Ephemeroptera, Plecoptera, and Trichoptera (collectively known as EPT), and adults of the order Odonata, along an environmental gradient of land use and land cover (LULC). We sampled 30 streams along an environmental gradient determined by the proportion of forest, pasture, and bauxite mining observed within the catchment of each stream. We identified 12 taxa associated with forest (nine positively and three negatively) and four negatively associated with pasture. However, no taxa were associated explicitly with the bauxite mining gradient. As forest is converted to pasture, the abundance and frequency of occurrence of the taxa sensitive to pasture are reduced, reflecting their environmental sensitivity and their potential as sentinels of preserved streams. The identification of the thresholds of the EPT and odonates taxa allowed us to determine which of these organisms are positively or negatively associated with the environmental gradient of LULC in Amazonian streams. We hope that the results of the present study can be applied in future biomonitoring programs, particularly for monitoring the response of aquatic insects to the degradation of streams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson, N. H., & Wallace, J. B. (1984). Habitat, life history, and behavioral adaptations of aquatic insects. In R. W. Merritt & K. W. Cummins (Eds.), An introduction to the aquatic insects of North America (pp. 38–58). Kendall/Hunt Publishing Company.

    Google Scholar 

  • Baker, M. E., & King, R. S. (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecology and Evolution, 1(1), 25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x

    Article  Google Scholar 

  • Baker, M. E., King, R. S., & Kahle, D. (2015). TITAN2: Threshold indicator taxa analysis. R package version 2.1. https://CRAN.R-project.org/package=TITAN2

  • Barona, E., Ramankutty, N., Hyman, G., & Coomes, O. T. (2010). The role of pasture and soybean in deforestation of the Brazilian Amazon. Environmental Research Letters, 5(2), 024002. https://doi.org/10.1088/1748-9326/5/2/024002

    Article  Google Scholar 

  • Bernhardt, E. S., Lutz, B. D., King, R. S., Fay, J. P., Carter, C. E., Helton, A. M., Campagna, D., & Amos, J. (2012). How many mountains can we mine? Assessing the regional degradation of central Appalachian rivers by surface coal mining. Environmental Science & Technology, 46(15), 8115–8122. https://doi.org/10.1021/es301144q

    Article  CAS  Google Scholar 

  • Brand, C., & Miserendino, M. L. (2015). Testing the performance of macroinvertebrate metrics as indicators of changes in biodiversity after pasture conversion in Patagonian Mountain streams. Water, Air, & Soil Pollution, 226(11), 370. https://doi.org/10.1007/s11270-015-2633-x

    Article  CAS  Google Scholar 

  • Brito, J. G., Roque, F. O., Martins, R. T., Nessimian, J. L., Oliveira, V. C., Hughes, R. M., de Paula, F. R., Ferraz, S. F. B., & Hamada, N. (2020). Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biological Conservation, 241, 108263. https://doi.org/10.1016/j.biocon.2019.108263

    Article  Google Scholar 

  • Burdon, F. J., McIntosh, A. R., & Harding, J. S. (2013). Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications, 23(5), 1036–1047. https://doi.org/10.1890/12-1190.1.

    Article  Google Scholar 

  • Callisto, M., Esteves, F. A., Gonçalves, J. F., & Leal, J. J. F. (1998). Impact of bauxite tailings on the distribution of benthic macrofauna in a small river (‘igarapé’) in Central Amazonia, Brazil. Journal of the Kansas Entomological Society, 71, 447–455.

    Google Scholar 

  • Calvão, L. B., Nogueira, D. S., Montag, L. F. A., Lopes, M. A., & Juen, L. (2016). Are Odonata communities impacted by conventional or reduced impact logging? Forest Ecolology and Management, 382, 143–150. https://doi.org/10.1016/j.foreco.2016.10.013

    Article  Google Scholar 

  • Calvão, L. B., Juen, L., Oliveira-Junior, J. M. B., Batista, J. D., & De Marco Jr., P. (2018). Land use modifies Odonata diversity in streams of the Brazilian Cerrado. Journal of Insect Conservation, 22(5), 675-685. https://doi.org/10.1007/s10841-018-0093-5

  • Castro, D. M. P., Reis de Carvalho, D., Pompeu, P. D. S., Moreira, M. Z., Nardoto, G. B., & Callisto, M. (2016). Land use influences niche size and the assimilation of resources by benthic macroinvertebrates in tropical headwater streams. PLoS ONE, 11(3), e0150527. https://doi.org/10.1371/journal.pone.0150527

    Article  CAS  Google Scholar 

  • Castro, D. M. P., Dolédec, S., & Callisto, M. (2017). Landscape variables influence taxonomic and trait composition of insect assemblages in Neotropical savanna streams. Freshwater Biology, 62(8), 1472–1486. https://doi.org/10.1111/fwb.12961

    Article  CAS  Google Scholar 

  • Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030

    Article  Google Scholar 

  • Corbet, P. S. (1999). Dragonflies: Behavior and ecology of Odonata. Comstock Publishing Associates.

    Google Scholar 

  • Crisci-Bispo, V. L., Bispo, P. C., & Froehlich, C. G. (2004). Triplectides larvae in empty cases of Nectopsyche (Trichoptera, Leptoceridae) at Parque Estadual Intervales, São Paulo State. Brazil. Revista Brasileira De Entomologia, 48(1), 133–134. https://doi.org/10.1590/S0085-56262004000100022

    Article  Google Scholar 

  • Crisci-Bispo, V. L., Bispo, P. C., & Froehlich, C. G. (2007). Ephemeroptera, Plecoptera and Trichoptera assemblages in two Atlantic rainforest streams. Southeastern Brazil. Revista Brasileira De Zoologia, 24(2), 312–318. https://doi.org/10.1590/S0101-81752007000200007

    Article  Google Scholar 

  • Da-Silva, E. R., Nessimian, J. L., & Coelho, L. B. N. (2010). Leptophlebiidae ocorrentes no Estado do Rio de Janeiro, Brasil: Hábitats, meso-hábitats e hábitos das ninfas (Insecta: Ephemeroptera). Biota Neotropica, 10(4), 87–93. https://doi.org/10.1590/S1676-06032010000400012

    Article  Google Scholar 

  • Dala-Corte, R. B., Melo, A. S., Siqueira, T., et al. (2020). Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 57(7), 1391–1402. https://doi.org/10.1111/1365-2664.13657

    Article  Google Scholar 

  • De Almeida, C. A., Coutinho, A. C., Esquerdo, J. C. D. M., Adami, M., Venturieri, A., Diniz, C. G., Dessay, N., Durieux, L., & Gomes, A. R. (2016). High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica., 46(3), 291–302. https://doi.org/10.1590/1809-4392201505504

    Article  Google Scholar 

  • Death, R. G., & Collier, K. J. (2010). Measuring stream macroinvertebrate responses to gradients of vegetation cover: When is enough enough? Freshwater Biology, 55(7), 1447–1464. https://doi.org/10.1111/j.1365-2427.2009.02233.x

    Article  Google Scholar 

  • De Faria, A. P. J., Ligeiro, R., Callisto, M., & Juen, L. (2017). Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 802(1), 39–51. https://doi.org/10.1007/s10750-017-3238-8

    Article  Google Scholar 

  • De Marco, P., Jr., & Resende, D. C. (2002). Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica, 31(2), 129–138.

    Google Scholar 

  • De Marco, P., Jr., Batista, J. D., & Cabette, H. S. R. (2015). Community assembly of adult odonates in tropical streams: An ecophysiological hypothesis. PLoS ONE, 10(4), e0123023. https://doi.org/10.1371/journal.pone.0123023.

    Article  CAS  Google Scholar 

  • Domínguez, E., Molineri, C., Pescador, M. L., Hubbard, M. D., & Nieto, C. (2006). Ephemeroptera of South America. Pensoft Publishers.

    Google Scholar 

  • Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Article  Google Scholar 

  • Embrapa. (1986). Centro de Pesquisa Agropecuária do Trópico Úmido (Belém, Pará). Laboratório de climatologia: normais climatológicas de Paragominas no período de 1980 a 1988. Embrapa, Belém

  • Fares, A. L. B., Calvão, L. B., Torres, N. R., Gurgel, E. S. C., & Michelan, T. S. (2020). Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators, 113, 106231. https://doi.org/10.1016/j.ecolind.2020.106231

    Article  Google Scholar 

  • Fearnside, P. M. (2017). Deforestation of the Brazilian Amazon. In: H. Shugart (Ed.), Oxford research encyclopedia of environmental science (pp. 1–53). Oxford University Press, New York. https://doi.org/10.1093/acrefore/9780199389414.013.102

  • Fierro, P., Bertrán, C., Tapia, J., Hauenstein, E., Peña-Cortés, F., Vergara, C., Cerna, C., & Vargas-Chacoff, L. (2017). Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment, 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197

    Article  CAS  Google Scholar 

  • Firmiano, K. R., Ligeiro, R., Macedo, D. R., Juen, L., Hughes, R. M., & Callisto, M. (2017). Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators, 74, 276–284. https://doi.org/10.1016/j.ecolind.2016.11.033

    Article  CAS  Google Scholar 

  • Fu, L., Jiang, Y., Ding, J., Liu, Q., Peng, Q.-Z., & Kang, M.-Y. (2016). Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. Journal of Freshwater Ecology, 31(1), 21–35. https://doi.org/10.1080/02705060.2015.1017847

    Article  CAS  Google Scholar 

  • Garrison, R. W., von Ellenrieder, N., & Louton, J. A. (2006). Dragonfly genera of the New World: An illustrated and annotated key to the Anisoptera. The Johns Hopkins University Press.

    Google Scholar 

  • Garrison, R. W., von Ellenrieder, N., & Louton, J. A. (2010). Damselfly genera of the New World: An illustrated and annotated key to the Zygoptera. The Johns Hopkins University Press.

    Google Scholar 

  • Giehl, N. F. S., Brasil, L. S., Dias-Silva, K., Nogueira, D. S., & Cabette, H. S. R. (2019). Environmental thresholds of Nepomorpha in Cerrado streams. Brazilian Savannah. Neotropical Entomology, 48(2), 186–196. https://doi.org/10.1007/s13744-018-0632-5

    Article  CAS  Google Scholar 

  • Godoy, B. S., Faria, A. P. J., Juen, L., Sara, L., & Oliveira, L. G. (2019). Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecological Indicators, 107, 105624. https://doi.org/10.1016/j.ecolind.2019.105624

    Article  Google Scholar 

  • Grimstead, J. P., Krynak, E. M., & Yates, A. G. (2018). Scale-specific land cover thresholds for conservation of stream invertebrate communities in agricultural landscapes. Landscape Ecology, 33(12), 2239–2252. https://doi.org/10.1007/s10980-018-0738-5

    Article  Google Scholar 

  • Hamada, N., & Silva, J.O. (2014). Ordem Plecoptera. In: Hamada, N., Nessimian, J.L., & Querino, R.B. (Eds.). Insetos aquáticos na Amazônia brasileira: Taxonomia, biologia e ecologia. Editora do INPA, Manaus, pp. 283–288

  • Heino, J. (2005). Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology, 50(9), 1578–1587. https://doi.org/10.1111/j.1365-2427.2005.01418.x

    Article  Google Scholar 

  • Hooke, R. L., Martín-Duque, J. F., & Pedraza, J. (2012). Land transformation by humans: A review. GSA Today, 22(12), 4–10. https://doi.org/10.1130/GSAT151A.1

    Article  Google Scholar 

  • Iñiguez-Armijos, C., Leiva, A., Frede, H.-G., Hampel, H., & Breuer, L. (2014). Deforestation and benthic indicators: How much vegetation cover is needed to sustain healthy Andean streams? PLoS ONE, 9(8), e105869. https://doi.org/10.1371/journal.pone.0105869

    Article  CAS  Google Scholar 

  • Jerves-Cobo, R., Everaert, G., Iñiguez-Vela, X., Córdova-Vela, G., Díaz-Granda, C., Cisneros, F., Nopens, I., & Goethals, P. L. M. (2017). A methodology to model environmental preferences of EPT taxa in the Machangara River basin (Ecuador). Water, 9(3), 195. https://doi.org/10.3390/w9030195

    Article  CAS  Google Scholar 

  • Juen, L., Cunha, E. J., Carvalho, F. G., Ferreira, M. C., Begot, T. O., Andrade, A. L., Shimano, Y., Leão, H., Pompeu, P. S., & Montag, L. F. A. (2016). Effects of oil palm plantations on the habitat structure and biota of streams in eastern Amazon. River Research and Applications, 32(10), 2081–2094. https://doi.org/10.1002/rra.3050

    Article  Google Scholar 

  • Jun, Y.-C., Kim, N.-Y., Kwon, S.-J., Han, S.-C., Hwang, I.-C., Park, J.-H., Won, D.-H., Byun, M.-S., Kong, H.-Y., Lee, J.-E., & Hwang, S.-J. (2011). Effects of land use on benthic macroinvertebrate communities: Comparison of two mountain streams in Korea. Annales De Limnologie-International Journal of Limnology, 47, S35–S49. https://doi.org/10.1051/limn/2011018

    Article  Google Scholar 

  • King, R. S., & Richardson, C. J. (2003). Integrating bioassessment and ecological risk assessment: An approach to developing numerical water-quality criteria. Environmental Management, 31(6), 795–809. https://doi.org/10.1007/s00267-002-0036-4

    Article  Google Scholar 

  • King, R. S., & Baker, M. E. (2014). Use, misuse, and limitations of Threshold Indicator Taxa Analysis (TITAN) for natural resource management. In G. R. Guntenspergen (Ed.), Application of threshold concepts in natural resource decision making (pp. 231–254). Springer.

    Chapter  Google Scholar 

  • Krynak, E. M., & Yates, A. G. (2018). Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecological Indicators, 93, 1050–1059. https://doi.org/10.1016/j.ecolind.2018.06.002

    Article  Google Scholar 

  • Kusin, F. M., Rahman, M. S. A., Madzin, Z., Jusop, S., Mohamat-Yusuff, F., Ariffin, M., & Mohd Syakirin, M. D. Z. (2017). The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang. Malaysia. Environmental Science and Pollution Research, 24(2), 1306–1321. https://doi.org/10.1007/s11356-016-7814-7

    Article  CAS  Google Scholar 

  • Larsen, S., & Alp, M. (2015). Ecological thresholds and riparian wetlands: An overview for environmental managers. Limnology, 16(1), 1–9. https://doi.org/10.1007/s10201-014-0436-1

    Article  Google Scholar 

  • Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., Villéger, S., Pompeu, P. S., Kasper, D., de Paula, F. R., Ferraz, S. F. B., & Gardner, T. A. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 41(1), 219–232. https://doi.org/10.1111/ecog.02845

    Article  Google Scholar 

  • Lencioni, F. A. A. (2005). The damselflies of Brazil: An illustrated guide - The non Coenagrionidae families. All Print Editora, São Paulo

  • Lencioni, F. A. A. (2006). The damselflies of Brazil: An illustrated guide - Coenagrionidae. All Print Editora, São Paulo

  • Lobo, F. D. L., Souza-Filho, P. W. M., Novo, E. M. L. M., Carlos, F. M., & Barbosa, C. C. F. (2018). Mapping mining areas in the Brazilian Amazon using MSI/Sentinel-2 imagery (2017). Remote Sensing, 10(8), 1178. https://doi.org/10.3390/rs10081178

    Article  Google Scholar 

  • Martins, R. T., Brito, J., Dias-Silva, K., Leal, C. G., Leitão, R. P., Oliveira, V. C., Oliveria-Júior, J. M. M., Ferraz, S. F. B., Paula, F. R., Roque, F. O., Hamada, N., Juen, L., Nessimian, J. L., Pompeu, P. S., & Hughes, R. M. (2021). Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators, 127, 107773. https://doi.org/10.1016/j.ecolind.2021.107773

    Article  Google Scholar 

  • Martins, R. T., Couceiro, S. R. M., Melo, A. S., Moreira, M. P., & Hamada, N. (2017). Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecological Indicators, 73, 480–491. https://doi.org/10.1016/j.ecolind.2016.10.013

    Article  CAS  Google Scholar 

  • Miguel, T. B., Oliveira-Junior, J. M. B., Ligeiro, R., & Juen, L. (2017). Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators, 81, 555–566. https://doi.org/10.1016/j.ecolind.2017.06.010

    Article  CAS  Google Scholar 

  • Miserendino, M. L., & Masi, C. I. (2010). The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators, 10, 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008

    Article  CAS  Google Scholar 

  • Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., & Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica, 65, 14–21. https://doi.org/10.1016/j.limno.2017.06.001

    Article  Google Scholar 

  • Oeding, S., Taffs, K. H., Cox, B., Reichelt-Brushett, A., & Sullivan, C. (2018). The influence of land use in a highly modified catchment: Investigating the importance of scale in riverine health assessment. Journal of Environmental Management, 206, 1007–1019. https://doi.org/10.1016/j.jenvman.2017.12.005

    Article  Google Scholar 

  • Oliveira, A. L. H., & Nessimian, J. L. (2010). Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnologica Brasiliensia, 22(4), 424–441. https://doi.org/10.4322/actalb.2011.007

    Article  Google Scholar 

  • Oliveira-Junior, J. M. B., Shimano, Y., Gardner, T. A., Hughes, R. M., De Marco, P., Jr., & Juen, L. (2015). Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecology, 40(6), 733–744. https://doi.org/10.1111/aec.12242.

    Article  Google Scholar 

  • Oliveira-Junior, J. M. B., De Marco, P., Jr., Dias-Silva, K., Leitão, R. P., Leal, C. G., Pompeu, P. S., et al. (2017). Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica, 66, 31–39. https://doi.org/10.1016/j.limno.2017.04.007.

    Article  Google Scholar 

  • Oliveira-Junior, J. M. B., & Juen, L. (2019). The Zygoptera/Anisoptera ratio (Insecta: Odonata): A new tool for habitat alterations assessment in Amazonian streams. Neotropical Entomology, 48(4), 552–560. https://doi.org/10.1007/s13744-019-00672-x

    Article  CAS  Google Scholar 

  • Paulson, D. (2006). The importance of forests to neotropical dragonflies. In A. C. Rivera (Ed.), Forests and dragonflies (pp. 79–101). Pensoft Publishers.

    Google Scholar 

  • Pes, A. M., Santos, A. P. M., Barcelos-Silva, P., & Camargos, L. M. (2014). Ordem Trichoptera. In: N. Hamada, J. L. Nessimian, & R. B. Querino (Eds.), Insetos Aquáticos na Amazônia Brasileira: Taxonomia, biologia e ecologia (pp. 391–434). Editora do Inpa, Manaus 

  • Pessacq, P. (2014). Synopsis of Epipleoneura (Zygoptera, Coenagrionidae, “Protoneuridae”), with emphasis on its Brazilian species. Zootaxa, 3872(3), 201–234. https://doi.org/10.11646/zootaxa.3872.3.1

  • Qian, S. S., King, R. S., & Richardson, C. J. (2003). Two statistical methods for the detection of environmental thresholds. Ecological Modelling, 166(1–2), 87–97. https://doi.org/10.1016/S0304-3800(03)00097-8

    Article  CAS  Google Scholar 

  • Quinn, J. M. (2000). Effects of pastoral development. In K. J. Collier & M. J. Winterbourn (Eds.), New Zealand stream invertebrates: Ecology and implications for management (pp. 208–229). New Zealand Limnological Society.

    Google Scholar 

  • Quisil, J. C., Nuñeza, O. M., & Villanueva, R. J. R. T. (2014). Impact of mine tailings on the species diversity of Odonata fauna in Surigao Del Sur, Philippines. Journal of Biodiversity and Environmental Sciences, 5(1), 465–476.

    Google Scholar 

  • Team R. C. (2018). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Resende D. C., & De Marco P., Jr. (2010). First description of reproductive behavior of the Amazonian damselfy Chalcopteryx rutilans (Rambur) (Odonata, Polythoridae). Revista Brasileira De Entomologia, 54(3), 436-440. https://doi.org/10.1590/S0085-56262010000300013

  • Rodrigues, M. E., Roque, F. O., Quintero, J. M. O., Pena, J. C. C., Sousa, D. C., & De Marco, P., Jr. (2016). Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation, 194, 113–120. https://doi.org/10.1016/j.biocon.2015.12.001.

    Article  Google Scholar 

  • Roque, F. O. , Menezes, J. F. S., Northfield, T., Ochoa-Quintero, J. M., Campbell, M. J., & Laurance, W. F. (2018). Warning signals of biodiversity collapse across gradients of tropical forest loss. Scientific Reports, 8(1), 1622. https://doi.org/10.1038/s41598-018-19985-9.

  • Salles, F. F., & Domínguez, E. (2012). Systematics and phylogeny of Ulmeritus-Ulmeritoides revisited (Ephemeroptera: Leptophlebiidae). Zootaxa, 3571(1), 49–65. https://doi.org/10.11646/zootaxa.3571.1.3

  • Salles, F. F., & Lima, M. M. (2014). Chave interativa para identificação dos gêneros de Leptophlebiidae (Ephemeroptera) registrados para o Brasil. http://www.ephemeroptera.com.br

  • Salles, F. F., Nascimento, J. M. C., Cruz, P. V., Boldrini, R., & Belmont, E. L. L. (2014). Ordem Ephemeroptera. In: N. Hamada, J. L. Nessimian, & R. B. Querino (Eds.), Insetos Aquáticos na Amazônia Brasileira: Taxonomia, biologia e ecologia (pp. 193–216). Editora do INPA, Manaus

  • Schmitt, R., Lemes da Silva, A. L., de Macedo Soares, L. C. P., Petrucio, M. M., & Siegloch, A. E. (2019). Influence of microhabitat on diversity and distribution of Ephemeroptera, Plecoptera, and Trichoptera in subtropical forest streams. Studies on Neotropical Fauna and Environment, 55(2), 129–138. https://doi.org/10.1080/01650521.2019.1704984

    Article  Google Scholar 

  • Schülting, L., Feld, C. K., Zeiringer, B., Huđek, H., & Graf, W. (2019). Macroinvertebrate drift response to hydropeaking: An experimental approach to assess the effect of varying ramping velocities. Ecohydrology, 12(1), e2032. https://doi.org/10.1002/eco.2032

    Article  Google Scholar 

  • Shimano, Y., & Juen, L. (2016). How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales De Limnologie-International Journal of Limnology, 52, 35–45. https://doi.org/10.1051/limn/2016004

    Article  Google Scholar 

  • Shimano, Y., Cardoso, M., & Juen, L. (2018). Ecological studies of mayflies (Insecta, Ephemeroptera): Can sampling effort be reduced without losing essential taxonomic and ecological information? Acta Amazonica, 48(2), 137–145. https://doi.org/10.1590/1809-4392201700583

    Article  Google Scholar 

  • Sonter, L. J., Herrera, D., Barrett, D. J., Galford, G. L., Moran, C. J., & Soares-Filho, B. S. (2017). Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications, 8(1), 1013. https://doi.org/10.1038/s41467-017-00557-w

    Article  CAS  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  • Suding, K. N., Gross, K. L., & Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution, 19(1), 46–53. https://doi.org/10.1016/j.tree.2003.10.005

    Article  Google Scholar 

  • Suriano, M. T., & Fonseca-Gessner, A. A. (2013). Structure of benthic macroinvertebrate assemblages on a gradient of environmental integrity in Neotropical streams. Acta Limnologica Brasiliensia, 25(4), 418–428. https://doi.org/10.1590/S2179-975X2013000400007

    Article  CAS  Google Scholar 

  • Taniwaki, R. H., Cassiano, C. C., Fransozi, A. A., Vásquez, K. V., Posada, R. G., Velásquez, G. V., & Ferraz, S. F. B. (2019). Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica, 74, 1–7. https://doi.org/10.1016/j.limno.2018.10.002

    Article  CAS  Google Scholar 

  • Törnblom, J., Angelstam, P., Degerman, E., Henrikson, L., Edman, T., & Temnerud, J. (2011). Catchment land cover as a proxy for macroinvertebrate assemblage structure in Carpathian Mountain streams. Hydrobiologia, 673(1), 153–168. https://doi.org/10.1007/s10750-011-0769-2

    Article  CAS  Google Scholar 

  • Utz, R. M., Hilderbrand, R. H., & Boward, D. M. (2009). Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators, 9, 556–567. https://doi.org/10.1016/j.ecolind.2008.08.008

    Article  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • von Ellenrieder, N. (2011). Odonata (dragonflies and damselflies) of the Kwamalasamutu region, Suriname. In: B. J. O'Shea, L. E. Alonso, T. H. Larsen (Eds.), A rapid biological assessment of the Kwamalasamutu region, southwestern Suriname (pp. 56–78). RAP bulletin of biological assessment 63. Conservation International, Arlington, VA

  • Yadamsuren, O., Morse, J. C., Hayford, B., Gelhaus, J. K., & Adler, P. H. (2020). Macroinvertebrate community responses to land use: A trait-based approach for freshwater biomonitoring in Mongolia. Hydrobiologia, 847(8), 1–16. https://doi.org/10.1007/s10750-020-04220-2

    Article  Google Scholar 

Download references

Acknowledgements

We also acknowledge Erlane Cunha, Alana Guterres, Isana Amorim, Híngara Leão, Mylena Cardoso, Lenize Calvão, Ana Luiza Andrade, Ana Luisa Fares, Calebe Maia, Denis Nogueira, Gilberto Nepomuceno Salvador, Naiara Raiol Torres, Thaísa Sala Michelan, and Thiago Augusto Pedroso Barbosa for helping us with the biological sampling. We thank Penagos, C.C.M. for his revision of the manuscript and Prata, E.G. for his assistance with the figure. Finally, we thank Pró-Reitoria de Pesquisa e Pós-graduação/Universidade Federal do Pará for financing the review of the English text of the manuscript.

Funding

We are grateful to 33 Forest Capital, CIKEL Ltda, Instituto Floresta Tropical (IFT), Hydro Alunorte Company, and the Biodiversity Research Consortium Brazil-Norway (BRC) for financial and logistical support. We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financing the projects entitled “Influência dos diferentes tipos de uso do solo sobre a biodiversidade na Amazônia Oriental” (project no. 449314/2014–2), “Tempo de resiliência das comunidades aquáticas após o corte seletivo de madeira na Amazônia Oriental” (project no. 481015/2011–6), and the Hydro Paragominas Company for supporting the project “Monitoring the Aquatic Biota of Streams in Areas of the Paragominas Mining SA, Pará, Brazil” (project no. 011) through the BRC Brazil-Norway. CKSP is grateful to Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) for granting a scholarship. LBC would also like to thank the CNPq for a scholarship (process no. 154761/2018–4). APJF thanks the BRC Brazil-Norway and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting her a scholarship (process no. 88882.176756/2018–01), and LJ thanks CNPq for a research productivity fellowship (process no. 307597/2016–4). This article is the BRC0034 in the publication series of the Biodiversity Research Consortium Brazil-Norway (BRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Justino Faria.

Ethics declarations

Conflict interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6109 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faria, A.P.J., Paiva, C.K.S., Calvão, L.B. et al. Response of aquatic insects to an environmental gradient in Amazonian streams. Environ Monit Assess 193, 763 (2021). https://doi.org/10.1007/s10661-021-09553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09553-6

Keywords

  • Land use
  • Deforestation
  • Threshold
  • Aquatic ecosystem
  • Macroinvertebrates