Skip to main content

Advertisement

Log in

Development of an in vivo acute bioassay using the marine medaka Oryzias melastigma

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To determine whether the marine medaka Oryzias melastigma is a suitable model organism for in vivo acute toxicity bioassay in seawater, we first determined whether there were differences in the concentrations of chemicals that were toxic to marine medaka (O. melastigma) and freshwater medaka (O. latipes). We performed in vivo acute toxicity bioassay with 3-chloroaniline, triclosan, 3,4-dichloroaniline, fenitrothion, and pyriproxyfen on larvae of both species. Although the concentrations of 3-chloroaniline and fenitrothion that were lethal to the larvae were identical for both species, the toxic concentrations of triclosan, 3,4-dichloroaniline, and pyriproxyfen were lower for O. melastigma than for O. latipes. We then used an in vivo acute toxicity bioassay to monitor the quality of coastal seawater in Akita, Japan. No lethal effects were observed in the harbor and canal in 2019. O. melastigma could be used to monitor the quality of seawater with salinities in the range 2–25. Our findings suggest that O. melastigma can be used as the test fish for in vivo acute toxicity bioassay intended for water quality monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The authors confirm that all data underlying the findings are fully available without restriction.

References

  • Añasco, N. C., Koyama, J., & Uno, S. (2010). Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in southern Japan. Archives of Environmental Contamination and Toxicology, 58(2), 352–360. https://doi.org/10.1007/s00244-009-9364-1

    Article  CAS  Google Scholar 

  • Bayen, S., Zhang, H., Desai, M. M., Ooi, S. K., & Kelly, B. C. (2013). Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore’s marine environment: Influence of hydrodynamics and physical-chemical properties. Environmental Pollution, 182, 1–8. https://doi.org/10.1016/j.envpol.2013.06.028

    Article  CAS  Google Scholar 

  • Belenguer, V., Martinez-Capel, F., Masiá, A., & Picó, Y. (2014). Patterns of presence and concentration of pesticides in fish and waters of the Júcar river (Eastern Spain). Journal of Hazardous Materials, 265, 271–279. https://doi.org/10.1016/j.jhazmat.2013.11.016

    Article  CAS  Google Scholar 

  • Bester, K. (2005). Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Archives of Environmental Contamination and Toxicology, 49(1), 9–17. https://doi.org/10.1007/s00244-004-0155-4

    Article  CAS  Google Scholar 

  • Bosker, T., Santoro, G., & Melvin, S. D. (2017). Salinity and sensitivity to endocrine disrupting chemicals: A comparison of reproductive endpoints in small-bodied fish exposed under different salinities. Chemosphere, 183, 186–196. https://doi.org/10.1016/j.chemosphere.2017.05.063

    Article  CAS  Google Scholar 

  • Campos, da Rocha, F.O., Martinez, S.T., Campos, V.P., da Rocha, G.O., de Andrade, J.B. (2021). Microplastic pollution in Southern Atlantic marine waters: Review of current trends, sources, and perspectives. Science of the Total Environment, 782, 146541. https://doi.org/10.1016/j.scitotenv.2021.146541

    Article  CAS  Google Scholar 

  • Chen, T. H., Chen, Y. L., Chen, C. Y., Liu, P. J., Cheng, J. O., & Ko, F. C. (2015). Assessment of ichthyotoxicity and anthropogenic contamination in the surface waters of Kenting National Park. Taiwan. Environmental Monitoring and Assessment, 187(5), 265. https://doi.org/10.1007/s10661-015-4511-9

    Article  CAS  Google Scholar 

  • Cristiano, W., Lacchetti, I., Di Domenico, K., Corti, M., Mancini, L., & Carere, M. (2020). Application of effect-based methods (EBMs) in a river basin: A preliminary study in Central Italy. Annali Dell’istituto Superiore Di Sanità, 56(1), 114–121. https://doi.org/10.4415/ANN_20_01_16

    Article  CAS  Google Scholar 

  • Dong, X., Zhang, L., Chen, M., Yang, Z., Zuo, Z., & Wang, C. (2018). Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma). Journal of Environmental Sciences, 63, 126–132. https://doi.org/10.1016/j.jes.2017.05.030

    Article  Google Scholar 

  • Escher, B. I., Aїt-Aїssa, S., Behnisch, P. A., Brack, W., Brion, F., Brouwer, A., Buchinger, S., Crawford, S. E., Du Pasquier, D., Hamers, T., Hettwer, K., Hilscherová, K., Hollert, H., Kase, R., Kienle, C., Tindall, A. J., Tuerk, J., van der Oost, R., Vermeirssen, E., & Neale, P. A. (2018). Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Science of the Total Environment, 628–629, 748–765. https://doi.org/10.1016/j.scitotenv.2018.01.340

    Article  CAS  Google Scholar 

  • Fauziah, S. H., Rizman-Idid, M., Cheah, W., Loh, K. H., Sharma, S. M. R. N., Bordt, M., Praphotjanaporn, T., Samah, A. A., Sabaruddin, J. S. B., & George, M. (2021). Marine debris in Malaysia: A review on the pollution intensity and mitigating measures. Marine Pollution Bulletin, 167, 112258. https://doi.org/10.1016/j.marpolbul.2021.112258

    Article  CAS  Google Scholar 

  • Fox, J., Bouchet-Valat, M. (2018). Rcmdr: R Commander. R package version 2.5–1.

  • Ghani, S. A., & Hanafi, A. H. (2016). QuEChERS method combined with GC-MS for pesticide residues determination in water. Journal of Analytical Chemistry, 71(5), 508–512.

    Article  Google Scholar 

  • Horie, Y., Yamagishi, T., Takahasgi, H., Shintaku, Y., Iguchi, T., & Tatarazako, N. (2017). Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212. Journal of Applied Toxicology, 37, 1245–1253.

    Article  CAS  Google Scholar 

  • Horie, Y., Kanazawa, N., Yamagishi, T., Yonekura, K., & Tatarazako, N. (2018). Ecotoxicological test assay using OECD TG 212 in marine Java medaka (Oryzias javanicus) and freshwater Japanese medaka (Oryzias latipes). Bulletin of Environmental Contamination and Toxicology, 101, 344–348.

    Article  CAS  Google Scholar 

  • Horie, Y., Kanazawa, N., Suzuki, A., Yonekura, K., & Chiba, T. (2019). Influences of salinity and organic compounds on embryo development in three medaka oryzias congeners with habitats ranging from freshwater to marine. Bulletin of Environmental Contamination and Toxicology, 103(3), 411–415. https://doi.org/10.1007/s00128-019-02649-3

    Article  CAS  Google Scholar 

  • Huang, Q., Liu, Y., Chen, Y., Fang, C., Chi, Y., Zhu, H., Lin, Y., Ye, G., & Dong, S. (2018). New insights into the metabolism and toxicity of bisphenol A on marine fish under long-term exposure. Environmental Pollution, 242(Pt A), 914–921. https://doi.org/10.1016/j.envpol.2018.07.048

    Article  CAS  Google Scholar 

  • Inoue, K., & Takei, Y. (2002). Diverse adaptability in Oryzias species to high environmental salinity. Zoological Science, 19(7), 727–734.

    Article  Google Scholar 

  • Issac, M. N., & Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research, 2, 1–19. https://doi.org/10.1007/s11356-021-13184-2

    Article  CAS  Google Scholar 

  • Kaonga, C. C., Takeda, K., & Sakugawa, H. (2015). Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan. Science of the Total Environment, 518–519, 450–458. https://doi.org/10.1016/j.scitotenv.2015.03.022

    Article  CAS  Google Scholar 

  • Kuster, M., & López de, Alda, M.J., Barata, C., Raldúa, D., Barceló, D. (2008). Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. Talanta, 75(2), 390–401. https://doi.org/10.1016/j.talanta.2007.11.027

    Article  CAS  Google Scholar 

  • Lee, P. Y., Lin, C. Y., & Chen, T. H. (2014). Environmentally relevant exposure of 17α-ethinylestradiol impairs spawning and reproductive behavior in the brackish medaka Oryzias melastigma. Marine Pollution Bulletin, 85, 338–343.

    Article  CAS  Google Scholar 

  • Leris, I., Kalogianni, E., Tsangaris, C., Smeti, E., Laschou, S., Anastasopoulou, E., Vardakas, L., Kapakos, Y., & Skoulikidis, N. T. (2019). Acute and sub-chronic toxicity bioassays of olive mill wastewater on the Eastern mosquitofish Gambusia holbrooki. Ecotoxicology and Environmental Safety, 175, 48–57. https://doi.org/10.1016/j.ecoenv.2019.03.025

    Article  CAS  Google Scholar 

  • Maier, D., Blaha, L., Giesy, J. P., Henneberg, A., Köhler, H. R., Kuch, B., Osterauer, R., Peschke, K., Richter, D., Scheurer, M., & Triebskorn, R. (2015). Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research, 72, 127–144. https://doi.org/10.1016/j.watres.2014.08.050

    Article  CAS  Google Scholar 

  • Nishi, I., Kawakami, T., & Onodera, S. (2008). Monitoring of triclosan in the surface water of the Tone Canal, Japan. Bulletin of Environmental Contamination and Toxicology, 80(2), 163–166. https://doi.org/10.1007/s00128-007-9338-9

    Article  CAS  Google Scholar 

  • OECD. (2013). Guidelines for the testing of chemicals, test no. 210: Fish, early-life stage toxicity test. OECD Publishing.

  • Seki, M., Yokota, H., Matsubara, H., Tsuruda, Y., Maeda, M., Tadokoro, H., & Kobayashi, K. (2002). Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis-ova in medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 21(8), 1692–1698.

    Article  CAS  Google Scholar 

  • Takehana, Y., Naruse, K., & Sakaizumi, M. (2005). Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 36(2), 417–428.

    Article  CAS  Google Scholar 

  • Tamura, I., Yasuda, Y., Kagota, K. I., Yoneda, S., Nakada, N., Kumar, V., Kameda, Y., Kimura, K., Tatarazako, N., & Yamamoto, H. (2017). Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams. Ecotoxicology and Environmental Safety, 144, 338–350. https://doi.org/10.1016/j.ecoenv.2017.06.032

    Article  CAS  Google Scholar 

  • Thuy, H. T., le Nga, P., & Loan, T. T. (2011). Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming. Environmental Science and Pollution Research, 18(6), 835–841. https://doi.org/10.1007/s11356-011-0475-7

    Article  CAS  Google Scholar 

  • Tsuji, S., Tonogai, Y., Ito, Y., Kanoh, S. (1986). The influence of rearing temperature on the toxicity of various environmental pollutants for killfish (Orizas latipes). EISEI KAGAKU, 32(1):46–53. (Japanese)

  • Vajda, A. M., Kumar, A., Woods, M., Williams, M., Doan, H., Tolsher, P., Kookana, R. S., & Barber, L. B. (2015). Integrated assessment of wastewater treatment plant effluent estrogenicity in the upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis). Environmental Toxicology and Chemistry, 34(5), 1078–1087. https://doi.org/10.1002/etc.2895

    Article  CAS  Google Scholar 

  • Wang, Z., Yeung, K. W. Y., Zhou, G. J., Yung, M. M. N., Schlekat, C. E., Garman, E. R., Gissi, F., Stauber, J. L., Middleton, E. T., Lin Wang, Y. Y., & Leung, K. M. Y. (2020a). Acute and chronic toxicity of nickel on freshwater and marine tropical aquatic organisms. Ecotoxicology and Environmental Safety, 206, 111373. https://doi.org/10.1016/j.ecoenv.2020.111373

    Article  CAS  Google Scholar 

  • Wang, R. F., Zhu, L. M., Zhang, J., An, X. P., Yang, Y. P., Song, M., & Zhang, L. (2020b). Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae. Chemosphere, 247, 125923. https://doi.org/10.1016/j.chemosphere.2020.125923

    Article  CAS  Google Scholar 

  • Wang, J., Zheng, M., Lu, L., Li, X., Zhang, Z., & Ru, S. (2021). Adaptation of life-history traits and trade-offs in marine medaka (Oryzias melastigma) after whole life-cycle exposure to polystyrene microplastics. Journal of Hazardous Materials, 414, 125537. https://doi.org/10.1016/j.jhazmat.2021.125537

    Article  CAS  Google Scholar 

  • Wilson, E. W., Castro, V., Chaves, R., Espinosa, M., Rodil, R., Quintana, J. B., Vieira, M. N., & Santos, M. M. (2021). Using zebrafish embryo bioassays combined with high-resolution mass spectrometry screening to assess ecotoxicological water bodies quality status: A case study in Panama rivers. Chemosphere, 272, 129823. https://doi.org/10.1016/j.chemosphere.2021.129823

    Article  CAS  Google Scholar 

  • Wittlerová, M., Jírová, G., Vlková, A., Kejlová, K., Malý, M., Heinonen, T., Wittlingerová, Z., Zimová, M. (2020). Sensitivity of zebrafish (Danio rerio) embryos to hospital effluent compared to Daphnia magna and Aliivibrio fischeri. Physiological Research, 31(69), S681-S691.

  • Yamagishi, T., Fuchida, S., Katsumata, M., Horie, Y., Mori, F., Kitayama, A., Kawachi, M., Koshikawa, H., Nozaki, T., Kumagai, H., Ishibashi, J.I., Tatarazako, N. (2018). Evaluation of the toxicity of leaches from hydrothermal sulfide deposits by means of a delayed fluorescence-based bioassay with the marine cyanobacterium Cyanobium sp. NIES-981. Ecotoxicology, 27(10), 1303–1309. https://doi.org/10.1007/s10646-018-1989-2

  • Yi, X., Bao, V. W. W., & Leung, K. M. Y. (2017). Binary mixture toxicities of triphenyltin with tributyltin or copper to five marine organisms: Implications on environmental risk assessment. Marine Pollution Bulletin, 124(2), 839–846. https://doi.org/10.1016/j.marpolbul.2017.02.031

    Article  CAS  Google Scholar 

  • Yue, Z., Tian, E., Chen, Y., Luo, L., Yang, L., He, L., Li, L., & Wang, J. (2021). The adverse effects of acrylamide exposure on the early development of marine medaka (Oryzias melastigma) and its mechanisms. Marine Pollution Bulletin, 163, 111875. https://doi.org/10.1016/j.marpolbul.2020.111875

    Article  CAS  Google Scholar 

  • Zhao, J. L., Ying, G. G., Liu, Y. S., Chen, F., Yang, J. F., & Wang, L. (2010). Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. Journal of Hazardous Materials, 179(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2010.02.082

    Article  CAS  Google Scholar 

  • Zhang, L., Li, Q., Chen, L., Zhang, A., He, J., Wen, Z., & Wu, L. (2015). Toxicity of surface water from Huangpu River to luminous bacteria (Vibrio qinghaiensis SP. Q67) and zebrafish (Danio rerio) embryos. Ecotoxicology and Environmental Safety, 112, 137–143. https://doi.org/10.1016/j.ecoenv.2014.10.037

    Article  CAS  Google Scholar 

  • Zheng, D., Yin, G., Liu, M., Chen, C., Jiang, Y., Hou, L., & Zheng, Y. (2021). A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Science of the Total Environment, 777, 146009. https://doi.org/10.1016/j.scitotenv.2021.146009

    Article  CAS  Google Scholar 

  • Zheng, Y., Li, Y., Yue, Z., Samreen, Li., & Z., Li, X., Wang, J. (2020). Teratogenic effects of environmentally relevant concentrations of phenanthrene on the early development of marine medaka (Oryzia melastigma). Chemosphere, 254, 126900. https://doi.org/10.1016/j.chemosphere.2020.126900

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported partly by the Salt Science Research Foundation, Japan (grant nos. 1915 and 2021) and a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant-in-Aid for Scientific Research [B] grant no. 19H04294) to Y.H.

Author information

Authors and Affiliations

Authors

Contributions

Yoshifumi Horie, all experiment except sampling for in vivo acute bioassays; Chiho Takahashi, sampling for in vivo acute bioassays. All authors listed on the current study contributed to the experimental design or data analysis.

Corresponding author

Correspondence to Yoshifumi Horie.

Ethics declarations

Ethics approval

The fish which was used in the present study were handled according to guidelines of Akita Prefectural University.

Consent to participate

This research did not involve human subjects, so clinical trial registration is not applicable.

Consent for publication

The authors certify that this manuscript is our original unpublished work, has not been published elsewhere, and is not under consideration by another journal. All authors have approved the manuscript and agree with its submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horie, Y., Takahashi, C. Development of an in vivo acute bioassay using the marine medaka Oryzias melastigma. Environ Monit Assess 193, 725 (2021). https://doi.org/10.1007/s10661-021-09527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09527-8

Keywords

Navigation