Skip to main content
Log in

Risk transfer from a megacity to a peri-urban agricultural community: wastewater reuse and effects on groundwater quality

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Urban wastewater is a resource that can be reused, but its management must be carefully executed, considering its potential impact on public and environmental health. Unfortunately, marked differences in the quality of treatment, management, collection, and the monitoring of wastewater exist among low-, middle-, and high-income countries. This is the case of the Mezquital Valley, a semi-rural area that is composed of agricultural and industrial communities on the outskirts of Mexico City. For over 100 years, wastewater from Mexico City and its areas of conurbation has been sent to the Mezquital Valley, with few studies having been conducted to assess the existence and severity of bacterial and pathogen infiltration into the local aquifer. In this research, we present an assessment of wastewater infiltration transported from Mexico City, used for irrigation, with potential infiltration into the Mezquital Valley aquifer. We utilized stable isotope analysis of deuterium and oxygen-18 to determine whether a mixture of untreated wastewater from the Mexico City Metropolitan Area (MCMA) flows into the Mezquital aquifer. Also, tests for adenovirus, rotavirus, fecal coliform, fecal enterococci, Giardia lamblia, and Cryptosporidium parvum were employed to determine the presence of fecal indicators and pathogens in different water sources in the study area. The results show the presence of indicators and pathogens in local wells used as water supply in Mezquital Valley. The presence of such indicators suggests that pathogens can reach the water consumed by the inhabitants, posing a hazard to persons exposed to these waters during their normal daily-life activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All databases used in this project are available upon reasonable request.

References

  • American Public Health Association (APHA), American Water Works Association, Water Environmental Federation (2005) Standard Methods for Examination of Water and Wastewater, Washington, DC: United Book Press.

  • Andrade, L., Kelly, M., Hynds, P., Weatherill, J., Majury, A., & O’Dwyer, J. (2020). Groundwater resources as a global reservoir for antimicrobial-resistant bacteria. Water Research, 170, 115360. https://doi.org/10.1016/j.watres.2019.115360

    Article  CAS  Google Scholar 

  • Al-Sudani, H. I. Z. (2019). A Review on Groundwater Pollution. International Journal of Recent Engineering Science, 6(5), 14–22.

    Google Scholar 

  • Azadpour-Keeley, A., Faulkner, B. R., & Chen, J.-S. (2003). Movement and Longevity of viruses in the subsurface. Environmental Protection Agency.

    Google Scholar 

  • British Geological Survey, Comisión Nacional del Agua, London School of Hygiene and Tropical Medicine, & University of Birmingham. (1998). Impact of wastewater re-use on groundwater quality in the Mezquital Valley, Mexico, 1994–98 . British Geological Survey Website.

  • Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the anthropocene. Science of the Total Environment, 684, 136–215.

    Article  CAS  Google Scholar 

  • Chamizo-Checa, S., Otazo-Sánchez, E., Gordillo-Martínez, A., Suárez-Sánchez, J., González-Ramírez, C., & Muñoz-Nava, H. (2020). Megacity wastewater poured into a nearby basin: Looking for sustainable scenarios in a case study. Water, 12(3), 824.

    Article  Google Scholar 

  • Chávez-Mejía, A. C., Navarro-González, I., Magaña-López, R., Uscanga-Roldán, D., Zaragoza-Sánchez, P. I., & Jiménez-Cisneros, B. E. (2019). Presence and natural treatment of organic micropollutants and their risks after 100 years of incidental water reuse in agricultural irrigation. Water, 11, 2148. https://doi.org/10.3390/w11102148

    Article  CAS  Google Scholar 

  • Comisión Nacional del Agua (CONAGUA). (2015). Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Valle del Mezquital (1310), Estado de Hidalgo. Hidalgo: Diario Oficial de la Federación.

  • Contreras Jesse D., Trangucci, R., Eunice E., Féix-Arellano, Rodríguez-Dozál S., Siebe, C., Riojas-Rodríguez, H., Meza, R., Zelner, J., & Eisenberg, J. N. S. (2020). Modeling spatial risk of diarrheal disease associated with household proximity to untreated wastewater used for irrigation in the Mezquital Valley, Mexico. Environmental Health Perspectives128(7), 077002. https://doi.org/10.1289/EHP6443

  • Contreras, J. D., Meza, R., Siebe, C., Rodríguez-Dozal, S., López-Vidal, Y. A., Castillo-Rojas, G., & Eisenberg, J. N. (2017). Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: a 25-year update. Water Research123, 834-850.

  • Contreras-Montiel, J. E. (2011) Implicaciones territoriales de la producción industrial en la microrregión Tula-Tepeji del Río. Tesis (PhD), Facultad de Arquitectura, Universidad Nacional Autónoma de México, México.

  • Cortés, A., Durazo, J., & Farvolden, R. N. (1997). Studies of Isotopic Hydrology of the Basin of Mexico and Vicinity: Annotated Bibliography and Interpretation. Journal of Hydrology, 198(1–4), 346–376. https://doi.org/10.1016/s0022-1694(96)03273-8

    Article  Google Scholar 

  • Cozma, A. I., Baciu, C., Moldovan, M., & Pop, I. C. (2016). Using natural tracers to track the groundwater flow in a mining area. Procedia Environmental Sciences, 32, 211–220. https://doi.org/10.1016/j.proenv.2016.03.026

    Article  CAS  Google Scholar 

  • Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., Siemens, J. (2012). Accumu- lation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLOS ONE, 7(9), e45397.

  • De Giglio, O., Caggiano, G., Apollonio, F., Marzella, A., Brigida, S., Ranieri, E., & Montagna, M. T. (2018). The aquifer recharge: An overview of the legislative and planning aspect. Annali Di Igiene, 30(1), 34–43.

    Google Scholar 

  • Environmental Protection Agency. (2005). Method 1623: Cryptosporidium and Giardia in Water by Filtra- tion/IMS/FA. Cincinnati, OH.

    Google Scholar 

  • Environmental Protection Agency (EPA). (2000) Giardia: Drinking Water Fact Sheet. Available at: http://water.epa.gov/action/advisories/drinking/upload/20090203criteriahumanhealthmicrobialgiardiafs.pdf. (accessed January 20, 2019).

  • Ferronsky, V. I., & Polyakov, V. A .(2012). Chapter 6. Isotopic Compossition of Water in the Unsaturated and Saturated Zones. In Isotopes of the Earth’s Hydrosphere, 116126. Springer Science +Buisness.

  • Fongaro, G., García-González, M. C., Hernández, M., Kunz, A., Barardi, C. R., & Rodríguez-Lázaro, D. (2017). Different behavior of enteric bacteria and viruses in clay and sandy soils after biofertilization with swine digestate. Frontiers in microbiology8, 74. https://doi.org/10.3389/fmicb.2017.00074

  • Foster, S., Chilton, J., Nijsten, G.-J., & Richts, A. (2013). Groundwater-A Global Focus on the Local Resource. Current Opinion in Environmental Sustainability, 5(6), 685–695. https://doi.org/10.1016/j.cosust.2013.10.010

    Article  Google Scholar 

  • Gleeson, T., Cuthbert, M., Ferguson, G., & Perrone, D. (2020). Global groundwater sustainability, resources, and systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48, 431–463.

    Article  CAS  Google Scholar 

  • Government of the State of Hidalgo (2011). Secretaría de Obras Públicas, Comunicaciones, Transporte y Asentamientos. (2007). Programa Estatal de 466Desarrollo Hídrico 2005-2011. Retrieved from http://intranet.e-467hidalgo.gob.mx/NormatecaE/Archivos/Programa_PreservacionConservacionAgua.pdf

  • Hernández-Martínez, J. L., Prado, B., Durán-álvarez, J. C., Bischoff, W. A., & Siebe, C. (2014). Movement of Water and Solutes in a Wastewater Irrigated Piedmont. Procedia Earth and Planetary Science, 10, 365–369. https://doi.org/10.1016/j.proeps.2014.08.060

    Article  CAS  Google Scholar 

  • Hooker, C., Capon, A., & Leask, J. (2017). Communicating about risk: strategies for situations where public concern is high but the risk is low. https://doi.org/10.17061/phrp2711709

  • Instituto Nacionalde Estadística y Geografía (INEGI).(2020). Retrieved from: https://www.inegi.org.mx/programas/ccpv/2020/

  • Khalid, S., Shahid, M., Bibi, I., Sarwar, T., Shah, A., & Niazi, N. (2018). A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. International Journal of Environmental Research and Public Health , 15(5), 895. https://doi.org/10.3390/ijerph15050895

  • Lesser-Carrillo, L. E., Lesser-Illades, J. M., Arellano-Islas, S., & González-Posadas, D. (2014). Balance Hídrico y Calidad del Agua Subterránea en el Acuífero del Valle Del Mezquital, México Central [Water Balance and Groundwater Quality in the Mezquital Valley Aquifer, Central Mexico]. Revista Mexicana De Ciencias Geológicas, 28(3), 323–336.

    Google Scholar 

  • Ley Federal de Derechos en Materia de Agua. (2019). Comisión Nacional del Agua (CONAGUA).

  • Lüneberg, K., Prado, B., Broszat, M., Dalkmann, P., Díaz, D., Huebner, J., & Siebe, C. (2018). Water flow paths are hotspots for the dissemination of antibiotic resistance in soil. Chemosphere193, 1198-1206.

    Article  Google Scholar 

  • Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archieves of Environmental Contamination and Toxicology80, 1–10. https://doi.org/10.1007/s00244-020-00805-z

  • Maier, R. M., Pepper, I. L., & Gerba, C. P. (2009). Environmental Microbiology (p. 598). Academic Press.

    Google Scholar 

  • McCullagh, p and Nelder, J.A. . (1989). Generalized linear models. Chapman and Hall.

    Book  Google Scholar 

  • Moreno, L. J. A., Lemus, D. D. S. Z., Rosero, J. L., Morales, D. M. A., Castaño, L. M. S., & Cuervo, D. P. (2020). Evaluation of aquifer contamination risk in urban expansion areas as a tool for the integrated management of groundwater resources. Case: Coffee Growing Region, Colombia. Groundwater for Sustainable Development10, 100298.

  • Morrison, C. M., Betancourt, W. Q., Quintanar, D. R., Lopez, G. U., Pepper, I. L., & Gerba, C. P. (2020). Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water research177, 115812. https://doi.org/10.1016/j.watres.2020.11581

  • Gerba, P. (2020). Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water Research., 177, 115812. https://doi.org/10.1016/j.watres.2020.115812

    Article  CAS  Google Scholar 

  • Murphy, H. M., Prioleau, M. D., Borchardt, M. A., & Hynds, P. D. (2017). Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeology Journal, 25(4), 981–1001. https://doi.org/10.1007/s10040-017-1543-y

    Article  Google Scholar 

  • Polaczyk, A. L., Narayanan, J., Cromeans, T. L., Hahn, D., Roberts, J. M., Amburgey, J. E., & Hill, V. R. (2008). Ultrafiltration-Based Techniques for Rapid and Simultane- ous Concentration of Multiple Microbe Classes from 100-L Tap Water Samples. Journal of Microbiological Methods, 73(2), 92–99. https://doi.org/10.1016/j.mimet.2008.02.014

    Article  CAS  Google Scholar 

  • Rashid, H., Arslan, C., & Khan, S. N. (2018). Wastewater Irrigation, Its Impact On Environment And Health Risk Assessment In Peri Urban Areas Of Punjab Pakistan-A Review. Environment Contamination Review, 1, 30–35.

    Article  Google Scholar 

  • Reckelhoff-Dangel, C., & Petersen, D. (2007). Risk Communication in Action: The Risk Commu- nication Workbook. Environmental Protection Agency.

    Google Scholar 

  • Sabino, H., Menezes, J., & de Lima, L. A. (2020). Indexing the Groundwater Quality Index for human consumption (GWQI HC) for urban coastal aquifer assessment. Environmental Earth Sciences, 79(8), 1–14.

    Article  Google Scholar 

  • Schijven, J. F., & Majid Hassanizadeh, S. (2000). Removal of Viruses by Soil Passage: Overview of Modeling, Processes, and Parameters. Critical Reviews in Environmental Science and Technology, 30(1), 49–127. https://doi.org/10.1080/10643380091184174

    Article  CAS  Google Scholar 

  • Siebe, C., & Cifuentes, E. (1995). Environmental Impact of Wastewater Irrigation in Cen- tral Mexico: An Overview. International Journal of Environmental Health Research, 5(2), 161–173. https://doi.org/10.1080/09603129509356845

    Article  CAS  Google Scholar 

  • Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Letters in applied NanoBioScience10(2), 2148-2166.

  • Singhal, A., Gupta, R., Singh, A. N., & Shrinivas, A. (2020). Assessment and monitoring of groundwater quality in semi–arid region. Groundwater for Sustainable Development11, 100381.

  • Sinreich, M., Pronk, M., & Kozel, R. (2013). Microbiological Monitoring and Classification of Karst Springs. Environmental Earth Sciences, 71(2), 563–572. https://doi.org/10.1007/s12665-013-2508-7

    Article  Google Scholar 

  • Solarte, Y., Peña, M., & Madera, C. (2006). Transmisión de protozoarios patógenos a través del agua para consumo humano. Colombia Médica, 37(1), 74–82.

    Google Scholar 

  • Tapia-Palacios, M. A. (2012). Detección de Cryptosporidium parvum y Giardia lamblia en Agua del Río Cuitzmala, Jalisco. B.Sc. Thesis. Facultad de Ciencias, Universidad Nacional Autónoma de México. México.

  • Tukey, J. W. (1992). Exploratory Data Analysis . Reading, Mass: Addison-Wesley.

  •  United Nations. (2015). Water for Life 2005–2015 . Ed. Ciudad, País.

  • Vázquez-Salvador, N., Silva-Magaña, M. A., Tapia-Palacios, M. A., Mora-López, M., Félix-Arellano, E., Rodríguez-Dozál, S., & Mazari-Hiriart, M. (2020). Household water quality in areas irrigated with wastew- ater in the Mezquital Valley. Mexico. Journal of Water and Health, 18(6), 1098–1109.

    Article  Google Scholar 

  • Villena, C., El-Senousy, W. M., Abad, F. X., Pinto, R. M., & Bosch, A. (2003). Group A Rotavirus in Sewage Samples from Barcelona and Cairo: Emergence of Unusual Genotypes. Applied and Environmental Microbi- Ology, 69(7), 3919–3923. https://doi.org/10.1128/aem.69.7.3919-3923.2003

    Article  CAS  Google Scholar 

  • Val, A. L., Bicudo, C. E. D. M., Bicudo, D. D. C., Pujoni, D. G. F., Rosado, F., Spilki, I. D. S. N., & Hirata, R. (2019). Water quality in Brazil. Water Quality in the Americas103.

  • Vasudevan, U., Gantayat, R. R., Chidambaram, S., Prasanna, M. V., Venkatramanan, S., Devaraj, N., & Ganesh, N. (2021). Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. Environmental Geochemistry and Health, 43(2), 1069–1088.

    Article  CAS  Google Scholar 

  • Wallender, E. K., Ailes, E. C., Yoder, J. S., Roberts, V. A., & Brunkard, J. M. (2013). Contributing Factors to Disease Outbreaks Associated with Untreated Groundwater. Groundwater, 52(6), 886–897. https://doi.org/10.1111/gwat.12121

    Article  CAS  Google Scholar 

  • World Health Organization. (2011). Guidelines for Drinking Water Quality (4th ed.). WHO Library.

    Google Scholar 

  • World Health Organization. (2013). Health and Environment: Communicating the Risk. WHO Publications.

    Google Scholar 

  • Xagoraraki, I., Kuo, D.H.-W., Wong, K., Wong, M., & Rose, J. B. (2007). Occurrence of Human Aden- oviruses at Two Recreational Beaches of The Great Lakes. Applied and Environmental Microbiology, 73(24), 7874–7881. https://doi.org/10.1128/aem.01239-07

    Article  CAS  Google Scholar 

  • Zainab, S. M., Junaid, M., Xu, N., & Malik, R. N. (2020). Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water research, 116455.

Download references

Funding

We thank the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), for the financial support provided. María Alejandra Fonseca Salazar was supported during her Ph.D. studies (Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México) by a fellowship from the Consejo Nacional de Ciencia y Tecnología (México) (CONACYT 278613705 Convocatoria 290649, Beca 412952/262627). Further support was provided by CONACYT grant 67890 and by grant PAPIIT-UNAM IG100221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Díaz-Avalos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca-Salazar, M.A., Díaz-Avalos, C., Rochin-García, H. et al. Risk transfer from a megacity to a peri-urban agricultural community: wastewater reuse and effects on groundwater quality. Environ Monit Assess 193, 741 (2021). https://doi.org/10.1007/s10661-021-09520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09520-1

Keywords

Navigation