Skip to main content

Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato

Abstract

Fires can pose a threat to forest ecosystems when those ecosystems are not fire-adapted or when forest community conditions make them vulnerable to wildfires. Thus, investigating fire-prone environmental conditions is urgently needed to create action plans that preserve these ecosystems. In this sense, climate variables can determine the environmental conditions favorable for forest fires. Our study confirms that vapor pressure deficit (VPD) is an essential climate indicator for forest fires, as it is related to maximum temperatures and low humidity, representing the stress conditions for vegetation prone to fires. This study explores the extent to which ENSO phases can modulate climatic conditions that lead to high VPD over Guanajuato, a semi-arid region in central Mexico, during the dry season (March–April-May). Using fire occurrence data from MODIS (2000–2019) and Landsat 5 (1998–1999), we developed a climatic probability model for the occurrence of forest fires using VPD estimated from ERA5 reanalysis for each ENSO phase. We found that VPD and the occurrence of forest fires were higher during El Niño than under Neutral and La Niña years, with a higher risk of forest fire occurrence in Guanajuato’s southern region. This study concludes that it is necessary to implement regional and local fire management plans, especially where the largest number of natural protected areas is located.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

MODIS fire locations are available from NASA Earthdata Cloud at https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data. Landsat 5 TM images are available through the Earth Explorer platform at https://earthexplorer.usgs.gov/. ERA5 data are available from the Copernicus Climate Change Service at https://cds.climate.copernicus.eu/. Finally, the ONI is available from the NOAA Climate Prediction Center at https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

References

  • Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences, 113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113

    CAS  Article  Google Scholar 

  • Alencar, A. A. C., Solórzano, L. A., & Nepstad, D. C. (2004). Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14(sp4), 139–149. https://doi.org/10.1890/01-6029

    Article  Google Scholar 

  • Anderson, D. B. (1936). Relative humidity or vapor pressure deficit. Ecology, 17(2), 277–282. https://doi.org/10.2307/1931468

    Article  Google Scholar 

  • Anderson, L. O., Marchezini, V., Morello, T. F., & Cunningham, C. A. (2019). Modelo conceitual de sistema de alerta e de gestão de riscos e desastres associados a incêndios florestais e desafios para políticas públicas no Brasil. Territorium, 26(I), 43–61. https://doi.org/10.14195/1647-7723_26-1_4

  • Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C., & Mechoso, C. R. (2019). A recent systematic increase in vapor pressure deficit over tropical South America. Scientific Reports, 9(1), 15331. https://doi.org/10.1038/s41598-019-51857-8

    CAS  Article  Google Scholar 

  • Bastarrika, A., Chuvieco, E., & Martín, M. P. (2011). Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 115(4), 1003–1012. https://doi.org/10.1016/j.rse.2010.12.005

    Article  Google Scholar 

  • Bolton, D. (1980). The computation of equivalent potential temperature. Monthly Weather Review, 108(7), 1046–1053. https://doi.org/10.1175/1520-0493(1980)108%3c1046:TCOEPT%3e2.0.CO;2

    Article  Google Scholar 

  • Brando, P. M., Soares-Filho, B., Rodrigues, L., Assunção, A., Morton, D., Tuchschneider, D., Fernandes, E. C. M., Macedo, M. N., Oliveira, U., & Coe, M. T. (2020). The gathering firestorm in southern Amazonia. Science Advances, 6(2), eaay1632. https://doi.org/10.1126/sciadv.aay1632

  • Brewer, C. K., Winne, J. C., Redmond, R. L., Opitz, D. W., & Mangrich, M. V. (2005). Classifying and mapping wildfire severity. Photogrammetric Engineering & Remote Sensing, 71(11), 1311–1320. https://doi.org/10.14358/PERS.71.11.1311

  • Card, D. (1982). Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3), 431–439.

    Google Scholar 

  • Carrillo, G. R., Rodríguez, D., Tchikoué, H., Monterroso, A., & Santillan, J. (2012). Análisis espacial de peligro de incendios forestales en Puebla, México. Interciencia, 37(9), 678–683.

    Google Scholar 

  • Castañeda Rojas, M. F., Endara Agramont, A. R., Villers Ruiz, M. D. L., & Nava Bernal, E. G. (2016). Evaluación forestal y de combustibles en bosques de Pinus hartwegii en el Estado de México según densidades de cobertura y vulnerabilidad a incendios. Madera y Bosques, 21(2). https://doi.org/10.21829/myb.2015.212444

  • Cavazos, T., & Hastenrath, S. (1990). Convection and rainfall over Mexico and their modulation by the Southern Oscillation. International Journal of Climatology, 10(4), 377–386. https://doi.org/10.1002/joc.3370100405

    Article  Google Scholar 

  • Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanase, M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A., Hawbaker, T. J., & Giglio, L. (2019). Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 225, 45–64. https://doi.org/10.1016/j.rse.2019.02.013

    Article  Google Scholar 

  • CONABIO. (2012). La biodiversidad en Guanajuato: Estudio de Estado.

  • Dominguez, C., Jaramillo, A., & Cuéllar, P. (2021). Are the socioeconomic impacts associated with tropical cyclones in Mexico exacerbated by local vulnerability and ENSO conditions? International Journal of Climatology, 41(S1), E3307–E3324. https://doi.org/10.1002/joc.6927

    Article  Google Scholar 

  • Drury, S. A., & Veblen, T. T. (2008). Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico. Plant Ecology, 197(2), 299–316. https://doi.org/10.1007/s11258-007-9379-5

    Article  Google Scholar 

  • Eskandari, S., Miesel, J. R., & Pourghasemi, H. R. (2020). The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, 118, 106720. https://doi.org/10.1016/j.ecolind.2020.106720

    Article  Google Scholar 

  • Farfán, M., Pérez-Salicrup, D. R., Flamenco-Sandoval, A., Nicasio-Arzeta, S., Mas, J.-F., & Ramírez Ramírez, I. (2018). Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques, 24(3). https://doi.org/10.21829/myb.2018.2431591

  • Ferreira, B. M., Soares-Filho, B. S., & Pereira, F. M. Q. (2019). The Dinamica EGO virtual machine. Brazilian Symposium on Programming Languages (SBLP ’15+16), 173, 3–20. https://doi.org/10.1016/j.scico.2018.02.002

  • French, N. H. F., Kasischke, E. S., Hall, R. J., Murphy, K. A., Verbyla, D. L., Hoy, E. E., & Allen, J. L. (2008). Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. International Journal of Wildland Fire, 17(4), 443. https://doi.org/10.1071/WF08007

    Article  Google Scholar 

  • Galvan-Ortiz, L. M. (2011). Impacto de la sequia meteorologica en la vegetacion en distintas regiones climaticas de Mexico (1982–2006). [Masters thesis, Universidad Nacional Autónoma de México (UNAM),]. http://132.248.9.195/ptb2011/octubre/0674287/Index.html

  • Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management, 51(3), 651–662. https://doi.org/10.1007/s00267-012-9961-z

    Article  Google Scholar 

  • Glantz, M. H., & Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. International Journal of Disaster Risk Science, 11(3), 394–403. https://doi.org/10.1007/s13753-020-00275-w

    Article  Google Scholar 

  • Hartmann, D. L. (2016). Global physical climatology (second edition). Elsevier.

    Google Scholar 

  • Hessl, A., Miller, J., Kernan, J., Keenum, D., & McKenzie, D. (2007). Mapping paleo-fire boundaries from binary point data: Comparing interpolation methods. The Professional Geographer, 59(1), 87–104. https://doi.org/10.1111/j.1467-9272.2007.00593.x

    Article  Google Scholar 

  • Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R., & Mohren, G. M. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology & Evolution, 16(2), 89–94. https://doi.org/10.1016/s0169-5347(00)02052-8

    CAS  Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression: Hosmer/applied logistic regression. John Wiley & Sons, Inc. https://doi.org/10.1002/0471722146

  • Huang, B., L’Heureux, M., Hu, Z.-Z., & Zhang, H.-M. (2016). Ranking the strongest ENSO events while incorporating SST uncertainty: ENSO RANKING. Geophysical Research Letters, 43(17), 9165–9172. https://doi.org/10.1002/2016GL070888

    Article  Google Scholar 

  • Ibarra-Montoya, J. L., & Huerta-Martínez, F. M. (2016). Modelado espacial de incendios: Una herramienta predictiva para el Bosque La Primavera, Jalisco México. Ambiente e Agua - an Interdisciplinary Journal of Applied Science, 11(1), 35–49. https://doi.org/10.4136/ambi-agua.1536

    Article  Google Scholar 

  • IEE. (2014). Mapa digital de uso de suelo y vegetación 2014 para el estado de Guanajuato. Coordinación de Ordenamiento Ecológico y Programas Especiales / Dirección de Recursos Naturales, Instituto de Ecología del Estado de Guanajuato. http://mapas.ecologia.guanajuato.gob.mx

  • INEGI. (2001). Conjunto de datos vectoriales Fisiográficos. Continuo Nacional serie I. Provincias fisiográficas [Map]. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267575

  • Key, C., & Benson, N. (2006). Landscape assessment: Ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. In FIREMON: Fire effects monitoring and inventory system (p. LA-1–51).

  • Kolden, C. A., & Weisberg, P. J. (2007). Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas. Fire Ecology, 3(1), 22–31. https://doi.org/10.4996/fireecology.0301022

    Article  Google Scholar 

  • Maeda, E. E., Arcoverde, G. F. B., Pellikka, P. K. E., & Shimabukuro, Y. E. (2011). Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis. Applied Geography, 31(1), 76–84. https://doi.org/10.1016/j.apgeog.2010.02.004

    Article  Google Scholar 

  • Magaña, V. O., Vázquez, J. L., Pérez, J. L., & Pérez, J. B. (2003). Impact of El Niño on precipitation in Mexico. Geofísica Internacional, 42(3), 313–330.

    Google Scholar 

  • Manel, S., Dias, J. M., Buckton, S. T., & Ormerod, S. J. (1999). Alternative methods for predicting species distribution: An illustration with Himalayan river birds. Journal of Applied Ecology, 36(5), 734–747. https://doi.org/10.1046/j.1365-2664.1999.00440.x

    Article  Google Scholar 

  • Manzo-Delgado, L., Aguirre-Gómez, R., & Álvarez, R. (2004). Multitemporal analysis of land surface temperature using NOAA-AVHRR: Preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20), 4417–4424. https://doi.org/10.1080/01431160412331269643

    Article  Google Scholar 

  • Manzo-Delgado, L., Sánchez-Colón, S., & Álvarez, R. (2009). Assessment of seasonal forest fire risk using NOAA-AVHRR: A case study in central Mexico. International Journal of Remote Sensing, 30(19), 4991–5013. https://doi.org/10.1080/01431160902852796

    Article  Google Scholar 

  • Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241–1252. https://doi.org/10.1016/j.jenvman.2008.07.005

    Article  Google Scholar 

  • Martínez Orea, Y., Argüero Castillo, S., Chávez Guadarrama, M. P., & Sánchez, I. (2010). Post-fire seed bank in a xerophytic shrubland. Botanical Sciences, 86(0). https://doi.org/10.17129/botsci.2316

  • Mas, J.-F., Soares Filho, B., Pontius, R., Farfán Gutiérrez, M., & Rodrigues, H. (2013). A suite of tools for ROC analysis of spatial models. ISPRS International Journal of Geo-Information, 2(3), 869–887. https://doi.org/10.3390/ijgi2030869

    Article  Google Scholar 

  • Mateo Rodrigues, J. M., Silva, E. V., & Figueiró, A. S. (2019). La geoecología de los paisajes como base teórico-metodológica para incorporar la dimensión tecnológica a la temática ambiental. Desenvolvimento e Meio Ambiente, 51. https://doi.org/10.5380/dma.v51i0.65410

  • Mueller, S. E., Thode, A. E., Margolis, E. Q., Yocom, L. L., Young, J. D., & Iniguez, J. M. (2020). Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. Forest Ecology and Management, 460, 117861. https://doi.org/10.1016/j.foreco.2019.117861

    Article  Google Scholar 

  • Nathan, R. J., McMahon, T. A., Peel, M. C., & Horne, A. (2019). Assessing the degree of hydrologic stress due to climate change. Climatic Change, 156(1), 87–104. https://doi.org/10.1007/s10584-019-02497-4

    Article  Google Scholar 

  • Návar, J., & Lizárraga-Mendiola, L. (2013). Hydro-climatic variability and forest fires in Mexico’s northern temperate forests. Geofísica Internacional, 52(1), 5–20. https://doi.org/10.1016/S0016-7169(13)71458-2

    Article  Google Scholar 

  • Naveh, Z. (1994). The role of fire and its management in the conservation of Mediterranean ecosystems and landscapes. In J. M. Moreno & W. C. Oechel (Eds.), The role of fire in Mediterranean-type ecosystems (pp. 163–185). Springer New York. https://doi.org/10.1007/978-1-4613-8395-6_9

  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

    Article  Google Scholar 

  • Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122–131. https://doi.org/10.1016/j.rse.2012.10.031

    Article  Google Scholar 

  • Pavón, N. P. (2011). El Niño y lo incendios en matorrales semiáridos de México (G. Sánchez-Rojas, C. Ballesteros-Barrera, & N. P. Pavón, Eds.; pp. 69–80).

  • Pompa-García, M., Camarero, J. J., Rodríguez-Trejo, D. A., & Vega-Nieva, D. J. (2018). Drought and spatiotemporal variability of forest fires across Mexico. Chinese Geographical Science, 28(1), 25–37. https://doi.org/10.1007/s11769-017-0928-0

    Article  Google Scholar 

  • Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1–3), 239–248. https://doi.org/10.1016/S0167-8809(01)00187-6

    Article  Google Scholar 

  • Pourghasemi, H. R., Gayen, A., Panahi, M., Rezaie, F., & Blaschke, T. (2019). Multi-hazard probability assessment and mapping in Iran. Science of the Total Environment, 692, 556–571. https://doi.org/10.1016/j.scitotenv.2019.07.203

    CAS  Article  Google Scholar 

  • Poveda, G., & Mesa, Ó. J. (1996). Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre la hidrología de Colombia. Tecnología y Ciencias Del Agua, 11(1), 21–37.

    Google Scholar 

  • Pyne, S. J., Andrews, P. L., & Laven, R. D. (1996). Introduction to wildland fire (2nd ed.). Wiley; /z-wcorg/.

  • Quintero, N., Viedma, O., Urbieta, I. R., & Moreno, J. M. (2019). Assessing landscape fire hazard by multitemporal automatic classification of Landsat Time Series using the Google Earth Engine in West-Central Spain. Forests, 10(6). https://doi.org/10.3390/f10060518

  • Ray, D., Nepstad, D., & Moutinho, P. (2005). Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15(5), 1664–1678. https://doi.org/10.1890/05-0404

    Article  Google Scholar 

  • Rodríguez Trejo, D. A. (2008). Fire regimes, fire ecology, and fire management in Mexico. AMBIO: A Journal of the Human Environment, 37(7), 548–556. https://doi.org/10.1579/0044-7447-37.7.548

  • Rodríguez-Trejo, D. A., & Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12(1), 23–37.

    Article  Google Scholar 

  • Rodríguez-Trejo, D. A., Martínez-Muñoz, P., & Martínez-Lara, P. J. (2019). Efectos del fuego en el arbolado de un bosque tropical de pino y en el de una selva baja caducifolia en Villaflores, Chiapas. Ciência Florestal, 29(3), 1033. https://doi.org/10.5902/1980509833952

    Article  Google Scholar 

  • Rodríguez-Trejo, D. A., & Pyne, S. J. (1999). Mexican fires of 1998. International Forest Fire News, 20, 61–63.

    Google Scholar 

  • Rojo Hernández, J. D., Mesa, Ó. J., & Lall, U. (2020). ENSO dynamics, trends, and prediction using machine learning. Weather and Forecasting, 35(5), 2061–2081. https://doi.org/10.1175/WAF-D-20-0031.1

    Article  Google Scholar 

  • Román-Cuesta, R. M. (2000). Forest fire situation in the state of Chiapas, Mexico. In J. Pugliese (Ed.), Global Forest Fire Assessment 1990–2000. (pp. 426–437). FRA 2000 main report. Working paper 55. Forestry Department, FAO.

  • Román-Cuesta, R. M., Gracia, M., & Retana, J. (2003). Environmental and human factors influencing fire trends in ENSO and non-ENSO years in tropical Mexico. Ecological Applications, 13(4), 1177–1192. JSTOR.

  • Roth, D., Moreno-Sanchez, R., Torres-Rojo, J. M., & Moreno-Sanchez, F. (2016). Estimation of human induced disturbance of the environment associated with 2002, 2008 and 2013 land use/cover patterns in Mexico. Applied Geography, 66, 22–34. https://doi.org/10.1016/j.apgeog.2015.11.009

    Article  Google Scholar 

  • Seager, R., Hooks, A., Williams, A. P., Cook, B., Nakamura, J., & Henderson, N. (2015). Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. Journal of Applied Meteorology and Climatology, 54(6), 1121–1141. https://doi.org/10.1175/JAMC-D-14-0321.1

  • Sedano, F., & Randerson, J. T. (2014). Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences, 11(14), 3739–3755. https://doi.org/10.5194/bg-11-3739-2014

    Article  Google Scholar 

  • SEMARNAP. (1999). Informe final de la campaña de prevención y combate de incendios forestales en el estado de Chiapas. Temporada 1998–1999.

  • SEMARNAT. (2014). Resultados del inventario estatal de Guanajuato.Secretaría de Medio Ambiente y Recursos Naturales. Available at. https://snigf.cnf.gob.mx/producto/resultados-del-inventario-estatal-de-guanajuato

  • Silvestrini, R. A., Soares-Filho, B. S., Nepstad, D., Coe, M., Rodrigues, H., & Assunção, R. (2011). Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications, 21(5), 1573–1590. https://doi.org/10.1890/10-0827.1

    Article  Google Scholar 

  • Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018

    Article  Google Scholar 

  • Sunderman, S. O., & Weisberg, P. J. (2011). Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems. Remote Sensing of Environment, 115(9), 2384–2389. https://doi.org/10.1016/j.rse.2011.05.001

    Article  Google Scholar 

  • Trenberth, K. E. (1991). General characteristics of El Nino-Southern Oscillation. Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Societal Impact, 13–42.

  • Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. S. (2010). Fire risk evaluation using multicriteria analysis—A case study. Environmental Monitoring and Assessment, 166(1–4), 223–239. https://doi.org/10.1007/s10661-009-0997-3

    Article  Google Scholar 

  • Vázquez, A., & Moreno, JoséM. (1993). Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landscape and Urban Planning, 24(1–4), 129–142. https://doi.org/10.1016/0169-2046(93)90091-Q

    Article  Google Scholar 

  • Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R., & Dettinger, M. D. (2003). Climate and wildfire in the western United States. Bulletin of the American Meteorological Society, 84(5), 595–604. https://doi.org/10.1175/BAMS-84-5-595

    Article  Google Scholar 

  • Williams, A. P., Seager, R., Macalady, A. K., Berkelhammer, M., Crimmins, M. A., Swetnam, T. W., Trugman, A. T., Buenning, N., Noone, D., McDowell, N. G., Hryniw, N., Mora, C. I., & Rahn, T. (2015). Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. International Journal of Wildland Fire, 24(1), 14. https://doi.org/10.1071/WF14023

    Article  Google Scholar 

  • Zamudio, S. (2012). Diversidad de ecosistemas del estado de Guanajuato. In La biodiversidad de Guanajuato: Estudio de Estado (pp. 19–55). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad / Instituto de Ecología del estado de Guanajuato.

Download references

Acknowledgements

We highly appreciate the helpful comments and suggestions provided by the editor and three anonymous reviewers. We acknowledge the support of the Dirección de Apoyo a la Investigación y al Posgrado of the Universidad de Guanajuato. The authors also thank the National Oceanic and Atmospheric Administration (NOAA) for the ONI data, the National Aeronautics and Space Administration (NASA) for the MODIS fire location data, and the US Geological Survey (USGS) for the Landsat 5 TM images used in this work.

Funding

Funding was provided by Universidad de Guanajuato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2175 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farfán, M., Dominguez, C., Espinoza, A. et al. Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato. Environ Monit Assess 193, 684 (2021). https://doi.org/10.1007/s10661-021-09494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09494-0

Keywords

  • Vapor pressure deficit
  • El Niño–Southern Oscillation
  • Dry environmental conditions
  • Wildfires