Skip to main content

Advertisement

Log in

Change detection and urban expansion of Port Sudan, Red Sea, using remote sensing and GIS

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

During the last two decades, Port Sudan City has witnessed major environmental stresses resulting from urban expansion and port extensions. This research aims at analysing land water changes (LWCs), land use land cover (LULC) changes and urban expansion of Port Sudan using remote sensing and GIS. For that purpose, an integrated remote sensing and GIS approach was designed to analyse two Enhanced Thematic Mapper (ETM) and an Operational Land Imager (OLI) Landsat images covering the period from 1999 to 2018. LWCs were detected using mathematical remote sensing and GIS-based procedures, while LULC changes were analysed through a post-classification comparison (PCC) approach using a support vector machine (SVM) classifier for classification. Major detected LWCs include landfill activities in the port area and north lagoon of Kilo Tamanya, and dredging activities in Khor Mog. Areas gained by landfill may have improved the port and transport functions but buried coral reefs and caused environmental problems as well. Furthermore, the urban areas were twice doubled, which was mostly rapid and uncontrolled, adding more pressure to the already stressed services and administrative sectors. Threats to the agricultural and mangrove areas were also analysed. The agricultural and mangrove areas were decreased by 40% each, which has been shown to have negative impacts on society, food security and biodiversity. Sadly, the lost agricultural lands were changed into bare soil, slums and other industrial uses. In contrast, mesquite forests were naturally increased by 74%. Mesquites have a major role in combating desertification and providing energy for domestic use. The driving forces and constraints of the urban expansion were highlighted. The change information provided by the applied approach will support decision-makers in adopting integrated and compatible land and coast management planning in the studied coastal city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All data generated or analysed during this study are included in this article.

References

  • Abdalla, A. H. (2015). Mesquite tree: Reversing the impact case study: Toker delta. Institute of Environmental Studies University of Khartoum.

  • Abdel Ati, H., Pavanello, S., Jaspars, S., Hashim, A.A., Idriss, M., & Pantuliano, S. (2011). City limits: Urbanisation and vulnerability in Sudan Port Sudan case study. London UK: Humanitarian Policy Group Overseas Development Institute.

  • Abe, S. (2005). Support vector machines for pattern classification (p. 343). London: Springer Science+Business Media.

    Google Scholar 

  • ADBG. (2017). African Development Bank Group Sudan. Institutional capacity building for improved access to water and sanitation in Port Sudan report.

  • Adler-Golden, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., Acharya, P. K., Anderson, G. P., Felde, G., Gardner, J., Hoke, M., Jeong, L. S., Pukall, B., Ratkowski, A., & Burke, H.-H. (1999). Atmospheric correction for short-wave spectral imagery based on MODTRAN4. JPL Publication, 99(17), 21–29.

    Google Scholar 

  • Ahtchi-Ali, F., & Vitiello, M. (2012). Construction methodology of fill placement over Sabkha. The Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece.

  • Al-Imam, O. A. O., Elzien, S. M., Mohammed, A. A., Elkrail, A. B., & Mustafa, A. A. (2015). Detection of hazardous elements in foundation layers in carbonate coastal plain Port-Sudan – Suakin Red Sea Sudan. American Journal of Engineering Research, 2(10), 205–213.

    Google Scholar 

  • Ali, A. A. (2009). The impact of early warning system on food security at Red Sea State – Eastern Sudan. Faculty of Natural and Agricultural Science University of the Free State.

    Google Scholar 

  • Al-Zubieri, A.G., Bantan, R. A., Abdalla, R., Antoni, S., Al-Dubai, T. A., & Majeed, J. (2018). Application of GIS and remote sensing to monitor the impact of development activities on the coastal zone of Jazan city on the Red Sea Saudi Arabia. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 42(3/W4), 45–50.

  • Anderson, R., Hardy, E.E., Roach, J.T., & Witmer, R.E. (1976). A land use and land cover classification system for use with remote sensor data. Sioux Falls: US Government Printing Office.

  • Alesheikh, A. A., Blais, J. A. R., Chapman, M. A., & Karimi, H. (1999). Rigorous geospatial data uncertainty models for GIS in spatial accuracy assessment: Land information uncertainty in natural resources Chapter 24. Ann Arbor Press.

    Google Scholar 

  • Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, 4(1), 61–66.

    Article  Google Scholar 

  • Babiker, M., & Gudmundsson, A. (2004). Geometry structure and emplacement of mafic dykes in the Red Sea Hills Sudan. Journal of African Earth Sciences, 38(3), 279–292.

    Article  Google Scholar 

  • Berry, L. V. (2015). Sudan a country study (5th ed., p. 426). Library of Congress: Federal Research Division.

    Google Scholar 

  • Binh, T. N. K. D., Vromant, N., Hung, N. T., Hens, L., & Boon, E. K. (2005). Land cover changes between 1968 and 2003 in Cai Nuoc Ca Mau peninsula Vietnam. Environment Development and Sustainability, 7(4), 519–536.

    Article  Google Scholar 

  • Boland, D.H.P. (1976). Trophic classification of lagoons using Landsat-I (ERTS-l) multispectral scanner data. Corvallis, OR: United States Environmental Protection Agency, Office of Research and Development, Corvallis Environmental Research Laboratory.

  • Braud, D. H., & Feng, W. (1998). Semi-automated construction of the Louisiana coastline digital land/water boundary using Landsat Thematic Mapper satellite imagery. Louisiana Applied Oil Spill Research and Development Program, OS2 RAPD Technical Report Series97(002).

  • Bui, T. D., Maier, S. W., & Austin, C. M. (2014). Land cover and land use change related to shrimp farming in coastal areas of Quang Ninh Vietnam using remotely sensed data. Environmental Earth Sciences, 72(2), 441–455.

    Article  Google Scholar 

  • Camps-Valls, G., Gómez-Chova, L., Calpe-Maravilla, J., Martín-Guerrero, J. D., Soria-Olivas, E., Alonso-Chordá, L., & Moreno, J. (2004). Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1530–1542.

    Article  Google Scholar 

  • Candade, N., and Dixon, B. (2004). Multispectral classification of Landsat images: A comparison of support vector machine and neural network classifiers. ASPRS Annual Conference Proceedings, Denver, Colorado.

  • Castelle, B., Guillot, B., Marieu, V., Chaumillon, E., Hanquiez, V., Bujan, S., & Poppeschi, C. (2018). Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France. Estuarine Coastal and Shelf Science, 200, 212–223.

    Article  Google Scholar 

  • Chan, J. C. W., Chan, K. P., & Yeh, A. G. O. (2001). Detecting the nature of change in an urban environment: A comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 67(2), 213–226.

    Google Scholar 

  • Collins, J. B., & Woodcock, C. E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 56(1), 66–77.

    Article  Google Scholar 

  • Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: Principles and practices (3rd ed., p. 327). CRC Press.

    Book  Google Scholar 

  • Coppin, P. R., & Bauer, M. E. (1996). Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 13(3–4), 207–234.

    Article  Google Scholar 

  • Cui, B. L., & Li, X. Y. (2011). Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology, 127(1–2), 32–40.

    Article  Google Scholar 

  • Dewidar, K. M. (2002). Landfill detection in Hurghada North Red Sea Egypt using thematic mapper images. International Journal of Remote Sensing, 23(5), 939–948.

    Article  Google Scholar 

  • Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206.

    Article  Google Scholar 

  • Dumper, M. R. T., & Stanley, B. E. (2007). Cities of the middle east and north Africa a historical encyclopedia (p. 439). ABC-CLIO Inc.

    Google Scholar 

  • El-Feky, T. A., & Ahmed, A. A. (2015). The impact of urban sprawl on pastoral and agricultural resources in Hoshiri south Port Sudan. Red Sea University Magazine, 8, 99–120. (in Arabic).

    Google Scholar 

  • Ekercin, S. (2007). Coastline change assessment at the Aegean Sea coasts in Turkey using multitemporal Landsat imagery. Journal of Coastal Research, 23(3), 691–698.

    Article  Google Scholar 

  • Elsheikh, A. E. M., & Elsayed, Z. K. A. (2015). Sea water/fresh water interaction in the Red Sea coast around Port - Sudan town - Red Sea State - Eastern Sudan. Nile Water Science & Engineering Journal, 8(1), 67–73.

    Google Scholar 

  • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Advances in Computational Mathematics, 13(1), 1–50.

    Article  Google Scholar 

  • Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1–2), 107–117.

    Article  Google Scholar 

  • Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(12), 1461–1468.

    Google Scholar 

  • Gaber, A., Geriesh, M. H., Shaheen, S., & El-Fattah, M. A. (2016). Mapping the surface changes in the area of East Port-Said, Egypt using multi-temporal and multi-sensors remote sensing data. Journal of Applied Geology and Geophysics, 4, 19–29.

    Article  Google Scholar 

  • Ganasri, B., Raju, A., & Dwarakish, G. (2013). Different approaches for land use land cover change detection: A review. Research & Reviews: Journal of Engineering and Technology, 2, 44–48.

    Google Scholar 

  • Ge, Q. Z., Ling, Z. C., Qiong, L., Hui, X. X., & Zhang, G. (2008). High efficient classification on remote sensing images based on SVM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1011–1014.

    Google Scholar 

  • Ghosh, M. K., Kumar, L., & Roy, C. (2015). Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137–144.

    Article  Google Scholar 

  • Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. L., Zaccagnino, A., & Colangelo, A. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Annals of Geophysics, 49(1), 295–304.

    Google Scholar 

  • Haenisch, H., Kenea, N. H., & Ott, N. (1996). Tectonic development of the Red Sea Hills of Sudan evidence from Landsal TM Mosaic interpretation. International Archives of Photogrammetry and Remote Sensing, 31, 262–267.

    Google Scholar 

  • Hamed, H. B. (2015). Pleistocene reefs of the Red Sea coast Sudan: Depositional environments fossil coral age dating and diagenesis. Berlin: Institute for Applied Geosciences Technical University. Available at https://d-nb.info/1070580678/34

  • Hansman, J., & Hoogeboom, J. (1992). The Development of Activity Centres in South-West Port Sudan. University of Amsterdam.

    Google Scholar 

  • Hawash, E. (2013). Monitoring urban environment changes and environmental hazards of some African cities on the Red Sea coast using remote sensing and GIS techniques. Cairo University.

    Google Scholar 

  • Hereher, M. E. (2011). Mapping coastal erosion at the Nile Delta western promontory using Landsat imagery. Environmental Earth Sciences, 64(4), 1117–1125.

    Article  Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • IMR. (2008). Assessment of the present state of the environment in Port Sudan harbour area (p. 63). Red Sea University.

    Google Scholar 

  • IMR, & FMSF. (2014). Elkhair Oil Terminal (phase II) environmental baseline study (p. 82). Red Sea University.

    Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing (3rd ed., p. 526). Prentice Hall.

    Google Scholar 

  • Jensen, J. R., Rutchey, K., Koch, M. S., & Narumalani, S. (1995). Inland wetland change detection in the Everglades Water Conservation Area 2A using a time series of normalized remotely sensed data. Photogrammetric Engineering and Remote Sensing, 61(2), 199–209.

    Google Scholar 

  • Jensen, J. R., & Im, J. (2007). Remote sensing change detection in urban environments. In R. R. Jensen, J. D. Gatrell, & D. McLean (Eds.), Geo-spatial technologies in urban environments: Policy practice and pixels (2nd ed., pp. 4–31). Springer.

    Chapter  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., & Saravanan, S. (2017). Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 169–185.

    Article  Google Scholar 

  • Kamh, S., Ashmawy, M., Kilias, A., & Christaras, B. (2012). Evaluating urban land cover change in the Hurghada area, Egypt, by using GIS and remote sensing. International Journal of Remote Sensing, 33(1), 41–68.

    Article  Google Scholar 

  • Kavzoglu, T., & Colkesen, I. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352–359.

    Article  Google Scholar 

  • Keuchel, J., Naumann, S., Heiler, M., & Siegmund, A. (2003). Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, 86(4), 530–541.

    Article  Google Scholar 

  • Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878–928.

    Article  Google Scholar 

  • Kuleli, T. (2010). Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental Monitoring and Assessment, 167(1), 387–397.

    Article  Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote sensing and image interpretation (7th ed., p. 720). John Wiley & Sons Inc.

    Google Scholar 

  • Ellis, J. T., Spruce, J. P., Swann, R. A., Smoot, J. C., & Hilbert, K. W. (2011). An assessment of coastal land-use and land-cover change from 1974–2008 in the vicinity of Mobile Bay Alabama. Journal of Coastal Conservation, 15(1), 139–149.

    Article  Google Scholar 

  • Louati, M., Saïdi, H., & Zargouni, F. (2015). Shoreline change assessment using remote sensing and GIS techniques: A case study of the Medjerda delta coast Tunisia. Arabian Journal of Geosciences, 8(6), 4239–4255.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Misra, A., & Balaji, R. (2015). Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat India. Environmental Monitoring and Assessment, 187(461), 1–13. https://doi.org/10.1007/s10661-015-4684-2.

    Article  Google Scholar 

  • MoEFUD (2014). Sudan’s report for United Nations’ third conference on housing and sustainable urban development, (Habitat III), 2016. Ministry of Environment Forestry and Urban development and UN-HABITAT.

  • MoFEP (2019). Implementation of Istanbul Plan of Action for Least Developed Countries 2011–2020. Khartoum: Ministry of Finance and Economic Planning. Sudan National Report.

  • Mohanty, P. K., Patra, S. K., Bramha, S., Seth, B., Pradhan, U., Behera, B., Mishra, P., & Panda, U. S. (2012). Impact of groins on beach morphology: A case study near Gopalpur Port east coast of India. Journal of Coastal Research, 28(1), 132–142.

    Article  Google Scholar 

  • Moufaddal, W. M. (2005). Use of satellite imagery as environmental impact assessment tool: A case study from the NW Egyptian Red Sea coastal zone. Environmental Monitoring and Assessment, 107(1), 427–452.

    Article  Google Scholar 

  • Mujabar, P. S., & Chandrasekar, N. (2013). Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences, 6(3), 647–664.

    Article  Google Scholar 

  • Muslim, A. M., Foody, G. M., & Atkinson, P. M. (2007). Shoreline mapping from coarse–spatial resolution remote sensing imagery of Seberang Takir Malaysia. Journal of Coastal Research, 23(6), 1399–1408.

    Article  Google Scholar 

  • Nasr, D. (2015). Coral reefs of the Red Sea with special reference to the Sudanese coastal area. In N. M. A. Rasul & I. C. F. Stewart (Eds.), The Red Sea - The formation morphology oceanography and environment of a Young Ocean Basin (pp. 453–470). Springer.

    Chapter  Google Scholar 

  • Oommen, T., Misra, D., Twarakavi, N. K., Prakash, A., Sahoo, B., & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40(4), 409–424.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011.

    Article  Google Scholar 

  • Paul, S., Saxena, K. G., Nagendra, H., & Lele, N. (2021). Tracing land use and land cover change in peri-urban Delhi, India, over 1973–2017 period. Environmental Monitoring and Assessment, 193(2), 1–12.

    Article  Google Scholar 

  • Peiman, R. (2011). Pre-classification and post-classification change-detection techniques to monitor land-cover and land-use change using multi-temporal Landsat imagery: A case study on Pisa Province in Italy. International Journal of Remote Sensing, 32(15), 4365–4381.

    Article  Google Scholar 

  • Rajitha, K., Mukherjee, C. K., Vinu Chandran, R., & Prakash Mohan, M. M. (2010). Land-cover change dynamics and coastal aquaculture development: A case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data. International Journal of Remote Sensing, 31(16), 4423–4442.

    Article  Google Scholar 

  • Ranganathan, R., & Briceño-Garmendia, C. (2011). Sudan’s Infrastructure: A continental perspective Africa Infrastructure Country Diagnostic (AICD) Report No. 64738. The International Bank for Reconstruction and Development/The World Bank.

  • Richards, J. A. (2013). Remote sensing digital image analysis: An introduction (5th Ed., p. 494). Springer Heidelberg New York Dordrecht London.

  • Ryu, J. H., Won, J. S., & Min, K. D. (2002). Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay Korea. Remote Sensing of Environment, 83(3), 442–456.

    Article  Google Scholar 

  • Sestini, J. (1965). Cenozoic stratigraphy and depositional history, Red Sea coast, Sudan. American Association of Petroleum Geologists Bulletin, 49(9), 1453–1472.

    Google Scholar 

  • Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41.

    Article  Google Scholar 

  • Schroeder, J. H., & Mansour, N. (1994). Sedimentary environments in the coastal plain of the Red Sea NE Sudan Thematic map 1: 50 000. Technische Fachhochschule.

    Google Scholar 

  • Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.

    Article  Google Scholar 

  • Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875.

    Article  Google Scholar 

  • Stow, D. A., Tinney, L. R., & Estes, J. E. (1980). Deriving land use/land cover change statistics from Landsat: A study of prime agricultural land. Proceedings of the 14th International Symposium on Remote Sensing of Environment held in Ann Arbor in 1980 (Ann Arbor, Michigan: Environmental Research Institute of Michigan) 1227–1237.

  • Szuster, B. W., Chen, Q., & Borger, M. (2011). A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525–532.

    Article  Google Scholar 

  • Twijnstra, R. (2015). ‘Recycling oil money’’: Procurement politics and (un) productive entrepreneurship in South Sudan.’ Journal of Eastern African Studies, 9(4), 685–703.

    Article  Google Scholar 

  • Tzotsos, A., Iosifidis, C., & Argialas, D. (2008). Support vector machine classification for object-based image analysis (pp. 663–667). Springer.

    Book  Google Scholar 

  • United Nations. (2017). Fact sheet, The Ocean Conference, United Nations, New York. Accessed June 20, 2020, from https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf

  • Vail, J. R. (1985). Pan-African (late Precambrian) tectonic terrains and the reconstruction of the Arabian-Nubian Shield. Geology, 13(12), 839–842.

    Article  Google Scholar 

  • Vanderstraete, T., Goossens, R., & Ghabour, T. K. (2006). The use of multi-temporal Landsat images for the change detection of the coastal zone near Hurghada Egypt. International Journal of Remote Sensing, 27(17), 3645–3655.

    Article  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory (p. 188). Springer.

    Book  Google Scholar 

  • Whiteman, A. J. (1971). The geology of the Sudan Republic (p. 290). Clarendon Press.

    Google Scholar 

  • World Bank Group. (2020). Sudan: Agriculture value chain analysis report. World Bank Group.

  • WPR. (2020). World population review Port Sudan population 2020. Accessed December 8, 2020, from https://worldpopulationreview.com/world-cities/port-sudan-population

  • Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., & Wu, J. (2011). Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environmental Monitoring and Assessment, 177(1), 609–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Hawash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 643 KB)

Supplementary file2 (PNG 28 KB)

Supplementary file3 (PNG 42 KB)

Supplementary file4 (PNG 1874 KB)

Supplementary file5 (PNG 2576 KB)

Supplementary file6 (PNG 1393 KB)

Supplementary file7 (PNG 214 KB)

Supplementary file8 (PNG 217 KB)

Supplementary file9 (PNG 219 KB)

Supplementary file10 (PNG 241 KB)

Supplementary file11 (PNG 242 KB)

Supplementary file12 (PNG 35 KB)

Supplementary file13 (PNG 91 KB)

Supplementary file14 (PNG 446 KB)

Supplementary file15 (PNG 838 KB)

Supplementary file16 (PNG 525 KB)

Supplementary file17 (PNG 11 KB)

Supplementary file18 (PNG 9 KB)

Supplementary file19 (PNG 9 KB)

Supplementary file20 (PNG 9 KB)

Supplementary file21 (PNG 9 KB)

Supplementary file22 (PNG 10 KB)

Supplementary file23 (PNG 483 KB)

Supplementary file24 (PNG 502 KB)

Supplementary file25 (PNG 265 KB)

Supplementary file26 (XLS 25 KB)

Supplementary file27 (XLS 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawash, E., El-Hassanin, A., Amer, W. et al. Change detection and urban expansion of Port Sudan, Red Sea, using remote sensing and GIS. Environ Monit Assess 193, 723 (2021). https://doi.org/10.1007/s10661-021-09486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09486-0

Keywords