Skip to main content

Advertisement

Log in

Investigations on baseline levels for natural radioactivity in soils, rocks, and lakes of Larsemann Hills in East Antarctica

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A comprehensive measurement of concentrations of the natural radionuclides 238U, 232Th and 40K, and 226Ra in the soil and rocks along with natural uranium and tritium activity levels in lake water were carried out during the Indian expedition to Antarctica. The samples were collected from the Larsemann Hills region in Antarctica (latitude 69°20′ S to 69°25′S, longitude 76°6′ E to 76°23′E). The data on the natural radioactivity for this region is limited. The study was carried out to establish baseline levels of radioactivity in different terrestrial matrices of this region such as soil, rocks, and lake water. A radiation survey mapping for terrestrial radioactivity was conducted in the region before collection of soil and rock samples. The soil and rock samples were analyzed for natural radioactivity concentrations using high-resolution gamma spectroscopy system. The major contributor to elevated gamma radiation background is attributed to the higher concentration of 232Th and 40K radionuclides in both soil and rocks. Terrestrial components of gamma dose rate due to natural radioactivity have been estimated from the measured radioactivity concentrations and dose conversion coefficients. Several “hotspots” and high background areas in the region have been identified having significantly higher concentration of 232Th and 40K. Rocks in Larsemann Hills region showed high reserve of thorium mineralization in monazites and 40K in K-feldspar. The concentrations of 232Th in soil are found to be in the range of 106–603 Bq/kg, whereas in rock it is in the range of 8–4514 Bq/kg. Natural radioactivity U (nat) and 3H contents in the lake water samples in Larsemann Hills region were estimated as 0.4 and 1.3 Bq/L and are well within the prescribed limit of radioactivity in drinking water as recommended by World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References 

  • Ajithra, A. K., Venkatraman, B., Jose, M. T., Chandrasekar, S., & Shanthi, G. (2017). Assessment of natural radioactivity and associated radiation indices in soil samples from the high background radiation area, Kanyakumari district, Tamil Nadu, India. Radiation Protection and Environment, 40, 27–33.

    Article  Google Scholar 

  • Ali, K., Sonbawane, S., Chate, D. M., Siingh, D., Rao, P. S. P., Safai, P. D., & Budhavant, K. B. (2010). Chemistry of snow and lake water in Antarctic region. Journal of Earth System Science, 119(6), 753–762.

    Article  CAS  Google Scholar 

  • ATCM XXXVII Final Report of the 37th Antarctic Treaty Consultative Meeting (ATCM), Brazil 2014 Volume I Measure 15 (2014) Annex https://www.env.go.jp/nature/nankyoku/kankyohogo/database/jyouyaku/asma/asma_pdf_en/ASMA06_en.pdf

  • Arora, D., Pant, N., Pandey, M., Chattopadhyay, A., Greenbaum, J., Siegert, M., Bo, S., Blankenship, D., Rao, N. C., & Bhandari, A. (2020). Insights into geological evolution of Princess Elizabeth Land, East Antarctica-clues for continental suturing and breakup since Rodinian time. Gondwana Research, 84, 260–283.

    Article  Google Scholar 

  • Axelsson E., Mezger K., Ewing T. (2020). The Kuunga Orogeny in the Eastern Ghats Belt: Evidence from geochronology of biotite, amphibole and rutile, and implications for the assembly of Gondwana, Precambrian Research, Vol 347, 105805, https://doi.org/10.1016/j.precamres.2020.105805

  • Bakshi, A. K., Rama, P., Chinnaesakki, S., Rupali, P., Deepa, S., Dhar Ajay, T., Selvam, P., Sapra, B. K., & Datta, D. (2017). Measurements of background radiation levels around Indian station Bharati, during 33rd Indian Scientific Expedition to Antarctica. Journal of Environmental Radioactivity, 167, 54–61.

    Article  CAS  Google Scholar 

  • Boger, S. D. (2011). Antarctica—Before and after Gondwana. Gondwana Research, 19(2), 335–371.

    Article  Google Scholar 

  • Bose, S., Das, K., Torimoto, J., Arima, M., & Dunkley, D. J. (2016). Evolution of the Chilka Lake granulite complex, northern Eastern Ghats Belt, India: First evidence of~780 Ma decompression of the deep crust and its implication on the India-Antarctica correlation. Lithos, 263, 161–189.

    Article  CAS  Google Scholar 

  • Bose, S., Ghosh, G., Kawaguchi, K., Das, K., Mondal, A.K. and Banerjee, A. (2021). Zircon and monazite geochronology from the Rengali-Eastern Ghats Province: Implications for the tectonic evolution of the eastern Indian terrane. Precambrian Research355, p.106080.

  • Carson, C. J., Sandra, McLaren, Jason, R., & l., Boger Steven D., Blankenship Donald D., . (2014). Hot rocks in a cold place: High sub-glacial heat flow in East Antarctica. Journal of the Geological Society, London, 171, 9–12. https://doi.org/10.1144/jgs2013-030

    Article  Google Scholar 

  • Chakrabarty, A., Mohapatra, S., Tripathi, R. M., Puranik, V. D., & Kushwaha, H. S. (2010). Quality control of uranium concentration measurements. Accreditation and Quality Assurance, 15(2), 119–123.

    Article  CAS  Google Scholar 

  • Cragin J. H., Giovinetto M. B. and Gow A. J. (1987). Baseline acidity of precipitation at the South Pole during the last two millennia. Geophysical Research Letters, Vol. 14 (8)789–792, https://doi.org/10.1029/GL014i008p00789

  • Curie, L. A. (1968). Limit for qualitative detection and quantitative determination: Application to radiochemistry. Analytical Chemistry, 40(3), 586–593.

    Article  Google Scholar 

  • Dingwall, S., Mills, C. E., Phan, N., & Taylor, K. (2011). Human health and the biological effects of tritium drinking water: Prudent policy through science - addressing the ODWAC new recommendation. Dose-Response, 9, 6–31. https://doi.org/10.2203/dose-response.10-048.Boreham

    Article  CAS  Google Scholar 

  • Dirks, P. H. G. M., & Wilson, C. J. L. (1995). Crustal evolution of the East Antarctic mobile belt in Prydz Bay:Continental collision at 500 Ma. Precambrian Research, 75, 189–207.

    Article  CAS  Google Scholar 

  • Fazelabdolabadi, B., & Golestan, M. H. (2020). Towards Bayesian quantification of permeability in micro-scale porous structures–the database of micro networks. HighTech and Innovation Journal, 1(4), 148-160.

  • Godoy, J. M., Schuch, L. A., Nordemann, D. J. R., Reis, V. R. G., Ramalho, M., & Recio, J. C. (1998). 137Cs, 226Ra, 228Ra, 210Pb and 40K concentrations in Antarctic soil, sediment and selected moss and lichen samples. Journal of Environmental Radioactivity, 41, 33–45.

    Article  CAS  Google Scholar 

  • Guiamel I.A and Lee. H.S. (2020). Watershed modelling of the Mindanao River Basin in the Philippines using the SWAT for water resource management; Civil Engineering Journal, Vol. 6, No. 4.626–648.

  • Harley, S. L., Fitzsimons, I. C., & Zhao, Y. (2013). Antarctica and supercontinent evolution: Historical perspectives, recent advances and unresolved issues. Geological Society, London, Special Publications, 383(1), 1–34.

    Article  Google Scholar 

  • Henderson, G. M., Hall, B. L., Smith, A., & Robinson, L. F. (2006). Control on (234U/238U) in lake water: A study in the Dry Valleys of Antarctica. Chemical Geology, 226, 298–308. https://doi.org/10.1016/j.chemgeo.2005.09.026

    Article  CAS  Google Scholar 

  • IAEA. (2003). Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation. Technical Reports Series, 419, 84.

    Google Scholar 

  • International Atomic Energy Agency. (1989). Measurement of radionuclides in food and environment. Technical Reports Series no. 295. IAEA, Vienna, Austria.

  • International Atomic Energy Agency. (2004). Quantifying uncertainty in nuclear analytical measurements. TECDOC No. 1401. IAEA, Vienna, Austria.

  • Javadinejad, S., Dara, R., & Jafary, F. (2020). Climate change scenarios and effects on snow-melt runoff. Civil Engineering Journal, 6(9), 1715–1725.

    Article  Google Scholar 

  • Koide, M., Michel, R., Goldberg, E. D., Herron, M. M., & Langway, C. C. (1979). Depositional history of artificial radionuclides in the Ross Ice Shelf. Antarctica; Earth and Planetary Science Letters, 44, 205–223.

    Article  CAS  Google Scholar 

  • Larsemann Hills. (2015). Satellite Image Map Edition 3 Map number 14241. Published in July 2015 by the Australian Antarctic Division Department of the Environment © Commonwealth of Australia. https://data.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=14241

  • Map 13379, Geology of the Larsemann Hills(2007), Geoscience Australia (Australia)(https://data.aad.gov.au/aadc/mapcat/display_map.cfm?map_id=13379)

  • Mohanty, A. K., Sengupta, D., Das, S. K., Vijayan, V., & Saha, S. K. (2014). Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa. India. Radiation Measurements, 38(2), 153–165.

    Article  Google Scholar 

  • Negoiţa, T. Gh., Varlam C., Kuznetsov, V Y Cotta, M, (2007). Antarctic waters Tritium levels, VI Simposio Argentino III Latinoamericano Sobre investigaciones Antárticas -VI Argentine and III Latin-American symposium on Antarctic research. http://mail.dna.gov.ar/ciencia/santar07/cd/pdf/cfqre205.pdf

  • Navas, A., Soto, J., & Lopez-Martinez, J. (2005). Radionuclides in soils of byers peninsula, south shetland islands, western Antarctica. Applied Radiation and Isotopes, 62, 809–816.

    Article  CAS  Google Scholar 

  • Obianyo, J. I. (2019). Effect of Salinity on Evaporation and the Water Cycle Emerging Science Journal, 3(4), 255–262.

    Google Scholar 

  • Paloma, M., Penalver, A., Aguilar, C., & Borrull, F. (2007). Tritium activity levels in environmental water samples from different origins. Applied Radiation and Isotopes, 65, 1048–1056.

    Article  Google Scholar 

  • Pant, N. C., Roy Sandip, Ravikant V., Ravindra Rasik. (2017). Recent contributions to the Antarctic Geology — An Indian perspective. Proceedings of Indian National Science Academy, 83 No. 2 June Thematic Issue, 269–278.

  • Pillai, P.M.B. (2008). Natural occurring radioactive materials in extraction and processing of rare earths, Proceedings of Fifth International Symposium NORM-V , Seville, published IAEA, Page 197. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1326_web.pdf

  • Popek, E. M. (2003). Sampling and analysis of environmental chemical pollutants, Academic Press, Elsevier, USA.

  • Pourchet, M., Bartarya, S. K., Maignan, M., Jouzel, J., Pinglot, J. F., Aristarain, A., Furdada, G., Kotlyakov, V. M., Mosley-Thompson, E., Preiss, N., & Young, N. W. (1997). Distribution and fall out of 137Cs and other radionuclides over Antarctica. Journal of Glaciology, 43(145), 435–445.

    Article  CAS  Google Scholar 

  • Pujol, L. L., & Sanchez-Cabeza, J. A. (1999). Optimisation of liquid scintillation counting conditions for rapid tritium determination in aqueous samples. Journal of Radioanalytical and Nuclear Chemistry, 242(2), 391–398.

    Article  CAS  Google Scholar 

  • Ramachandran, T. V., Balani, M.C. (1995). Report on the Participation by the Bhabha Atomic Research Centre in the Tenth Indian Expedition to Antarctica. Tenth Indian Expedition to Antarctica, Scientific Report, Department of Ocean Development, Technical Publication No. 8, 159-180. http://14.139.119.23:8080/dspace/handle/123456789/385

  • Ramasamy, V., Sundarrajan, M., Suresh, G., Paramasivam, K., & Meenakshisundaram, V. (2014). Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India. Applied Radiation and Isotopes, 85, 1–10.

    Article  CAS  Google Scholar 

  • Reddy, P. J., Bhade, S. P. D., Kolekar, R. V., Rajvir, S., & Pradeepkumar, K. S. (2014). Concentration of 3H in ground water and estimation of committed effective dose due to ground water ingestion in some places in the Maharashtra state. India. Radiation Protection Dosimetry, 158(3), 318–324.

    Article  CAS  Google Scholar 

  • Rimsaite, J. (1982). Alteration of radioactive minerals in granite and related secondary uranium mineralizations. In: Amstutz G.C. et al., (eds) Ore genesis. Special Publication of the Society for Geology Applied to Mineral Deposits, vol 2. Springer, Berlin, Heidelberg Ch.27 p.269–280. https://doi.org/10.1007/978-3-642-68344-2_27

  • Röthlisberger, R., Bigler, M., Hutterli, M. A., Mulvaney, R., Sommer, S., & Wolff, E. W. (2002). Dust and sea-salt variability in Central East Antarctica over the last 45 kyrs and its implications for southern high-latitude climate.

  • Rump, A., Eder, S., Lamkowski, A., Hermann, C., Abend, M., & Port, M. (2019). A quantitative comparison of the chemo- and radiotoxicity of uranium at different enrichment grades. Toxicology Letters, 313, 159–168. https://doi.org/10.1016/j.toxlet.2019.07.004

    Article  CAS  Google Scholar 

  • Sadarangani, S. H., Krishnamoorthy, T. M., & Gopinath, D. V. (1995). Tritium concentration in surface water of Indian Ocean and in lakes around Indian Station. Maitri, in Antarctica, Indian Journal of Geo-Marine Sciences, 24(4), 192–195.

    CAS  Google Scholar 

  • Sadiq, M., Dharwadkar, A., Roy, S.K., Arora, D., Shah, M.Y. and Bhandari, A. (2021). Thermal evolution of mafic granulites of Princess Elizabeth Land, East Antarctica. Polar Science, p.100641.

  • Santosh, M., Yokoyama, K., Biju-Sekhar, S., & Rogers, J. J. W. (2003). Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: Implications on the history of supercontinents. Gondwana Research, 6(1), 29–63.

    Article  CAS  Google Scholar 

  • Sartandel, S. J., Chinnaesakki, S., Bara, S., & V, Krishna N. S., Vinod Kumar A., Tripathi R. M. (2014). Assessment of natural and fallout radioactivity in soil samples of Visakhapatnam. Journal of Radioanalytical and Nuclear Chemistry, 299, 337–342. https://doi.org/10.1007/s10967-013-2737-y.

    Article  CAS  Google Scholar 

  • Schonofer, F. (1994). Low level measurements of radioactivity in the environment. techniques and application, Proceedings Of The Third International Summer School World Scientific,, Eds. Garcia-leon M, Garcia-tenorio R World Scientific p. 155. https://doi.org/10.1142/9789814534802

  • Thabayneh, M. K. (2013). Measurement of natural radioactivity and radon exhalation rate in granite samples used in Palestinian buildings. Arabian Journal for Science and Engineering, 38, 201–207.

    Article  CAS  Google Scholar 

  • Tubertini, O., Bettoli, M. G., Cantelli, L., Tositti, L., Triulzi, S. V. C., Marzano, F. N., et al. (1995). Italian Antarctic Research Program: Environmental radioactivity survey around the Italian Base (1987–1991) Terra Nova Bay - Ross Sea Region. Journal of Environmental Radioactivity, 1, 3541.

    Google Scholar 

  • Uosif, M. A. M., Issa, S. A. M., & Abd El-Salam, L. M. (2015). Measurement of natural radioactivity in granites and its quartz-bearing gold at El-Fawakhir area (Central Eastern Desert). Egypt. Journal of Radiation Research and Applied Science, 8, 393–398.

    Article  Google Scholar 

  • UNSCEAR, (2000). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation.

  • UNSCEAR, (2008). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, Report, Annex C, United Nations, New York.

  • Upadhyay, D., Gerdes, A., & Raith, M. M. (2009). Unraveling sedimentary provenance and tectonothermal history of high-temperature metapelites, using zircon and monazite chemistry: A case study from the Eastern Ghats Belt. India, the Journal of Geology, 117(6), 665–683.

    Article  CAS  Google Scholar 

  • USEPA, (2001). Parameters of water quality, Interpretation and standards, Wexford, Ireland.

  • Varlam, C., Stefanescu, I., Duliu, O. G., Faurescu, I., & Popescu, I. (2009). Applying direct liquid scintillation counting to low level tritium measurement. Applied Radiation and Isotopes, 67(5), 812–816.

    Article  CAS  Google Scholar 

  • Vyshnavi, S., & Islam, R. (2015). Water–rock interaction on the development of granite gneissic weathered profiles in Garhwal Lesser Himalaya. India; Journal of Earth System Science, 124(5), 945–963.

    Article  CAS  Google Scholar 

  • Waseem, A., Ullah, H., Rauf, M. K., & Ahmad, I. (2015). Distribution of natural uranium in surface and groundwater resources: A Review. Critical Reviews in Environmental Science and Technology, 45(22), 2391–2423. https://doi.org/10.1080/10643389.2015.1025642

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2011). Guidelines for drinking water quality recommendations, Geneva, 4th ed, Vol. 1, pp. 515.

  • Zou, X., Hou, S., Liu, K., Yu, J., Zhang, W., Pang, H., et al. (2018). Uranium record from a 3 m snow pit at Dome Argus. East Antarctica. Plos One, 13(10), e0206598. https://doi.org/10.1371/journal.pone.0206598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. S. Chinnaesakki and Smt. Sheetal V. Bara, Health Physics Division, BARC, for their support in gamma spectrometry of soil and rock samples. Authors wish to thank Devsamridhi Arora, Research Scholar, Department of Geology, University of Delhi, for her valuable inputs on the Geology of Larsemann Hills. Authors are grateful to National Centre for Polar and Ocean Research (NCPOR), Goa, India, formerly known as National Centre for Antarctic and Ocean Research (NCAOR) providing all the logistic help to collect samples from Larsemann Hills Region, Antarctica, under 35th expedition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupali Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R., Patra, A.C., Bakshi, A.K. et al. Investigations on baseline levels for natural radioactivity in soils, rocks, and lakes of Larsemann Hills in East Antarctica. Environ Monit Assess 193, 822 (2021). https://doi.org/10.1007/s10661-021-09446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09446-8

Keywords

Navigation