Skip to main content

Advertisement

Log in

Assessment of trends in climatic extremes from observational data in the Kashmir basin, NW Himalaya

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study aims to assess the recent changes and trends in the extreme climate indices in the Kashmir basin using the observational records from 1980 to 2016. The extreme climate indices were computed using the ClimPACT2 software and a total of 39 indices were selected for the analysis having particular utility to various sectors like agriculture, water resources, energy consumption, and human health. Besides adopting the station scale analysis, regional averages were computed for each index. In terms of the mean climatology, an increase has been observed in the annual mean temperature with a magnitude of 0.024 °C/year. Further, differential warming patterns have been observed in the mean maximum and minimum temperatures with mean maximum temperature revealing higher increases than mean minimum temperature. On the other hand, the annual precipitation shows a decrease over most of the region, and the decreases are more pronouncing in the higher altitudes. The trend analysis of the extreme indices reveals that in consonance with the rising temperature there has been an increase in the warm temperatures and decrease in the cold temperatures across the Kashmir basin. Furthermore, our analysis suggests a decrease in the extreme precipitation events. The drought indices viz., Standardised Precipitation Index (SPI), and Standardised Precipitation Evapotranspiration Index (SPEI) manifest decreasing trends with the tendency towards drier regimes implying the need for better water resource management in the region under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Authors declare that the datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, N., Wang, G., Booij, M. J., et al. (2020a). Climatic variability and periodicity for upstream sub-basins of the Yangtze River. China Water, 12, 842. https://doi.org/10.3390/w12030842

    Article  Google Scholar 

  • Ahmed, N., Wang, G.-X, Oluwafemi, A., et al. (2020b). Temperature trends and elevation dependent warming during 1965–2014 in headwaters of Yangtze River. Qinghai Tibetan Plateau Journal of Mountain Science, 17, 556–571. https://doi.org/10.1007/s11629-019-5438-3

    Article  Google Scholar 

  • Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., & Wieringa, J. (2003). Guidelines on climate metadata and homogenization. World Climate Programme Data and Monitoring WCDMP-No. 53, WMO-TD No. 1186. World Meteorological Organization, Geneva, 55.

  • Alam, A., Ahmad, S., Bhat, M. S., & Ahmad, B. (2015). Tectonic evolution of Kashmir basin in northwest Himalayas. Geomorphology, 239, 114–126. https://doi.org/10.1016/j.geomorph.2015.03.025

    Article  Google Scholar 

  • Alam, A., Bhat, M. S., Kotlia, B. S., Ahmad, B., Ahmad, S., Taloor, A. K., & Ahmad, H. F. (2017). Coexistent pre-existing extensional and subsequent compressional tectonic deformation in the Kashmir basin, NW Himalaya. Quaternary International, 444, 201–208. https://doi.org/10.1016/j.quaint.2017.06.009

    Article  Google Scholar 

  • Alam, A., Bhat, M. S., Farooq, H., Ahmad, B., Ahmad, S., & Sheikh, A. H. (2018). Flood risk assessment of Srinagar city in Jammu and Kashmir, India. International Journal of Disaster Resilience in the Built Environment, 9(2), 114–129. https://doi.org/10.1108/IJDRBE-02-2017-0012

    Article  Google Scholar 

  • Alam, A., Bhat, M. S., & Maheen, M. (2019). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal. https://doi.org/10.1007/s10708-019-10037-x

    Article  Google Scholar 

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., & Tagipour, A. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research. Atmospheres, 111(D5). https://doi.org/10.1029/2005JD006290

  • Alexander, L., & Tebaldi, C. (2012). Climate and weather extremes: Observations, modelling and projections. The Future of the World’s Climate, 253, 288.

    Google Scholar 

  • Alexander, L & Herold, N. (2016). ClimPACT2 Indices and software, The University of South Wales, Sidney. https://github.com/ARCCSS-extremes/climpact2.

  • Athar, H. (2014). Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. International Journal of Climatology, 34(5), 1561–1574. https://doi.org/10.1002/joc.3783

    Article  Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303–309. https://doi.org/10.1038/nature04141

    Article  CAS  Google Scholar 

  • Bayissa, Y., Maskey, S., Tadesse, T., Van Andel, S. J., Moges, S., Van Griensven, A., & Solomatine, D. (2018). Comparison of the performance of six drought indices in characterizing historical drought for the upper Blue Nile basin Ethiopia. Geosciences, 8(3), 81. https://doi.org/10.3390/geosciences8030081

    Article  Google Scholar 

  • Beniston, M., & Stoffel, M. (2014). Assessing the impacts of climatic change on mountain water resources. Science of the Total Environment, 493, 1129–1137. https://doi.org/10.1016/j.scitotenv.2013.11.122

    Article  CAS  Google Scholar 

  • Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A., Frei, C., Goyette, S., & Palutikof, J. (2007). Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81(1), 71–95. https://doi.org/10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Bhat, M. S., Ahmad, B., Alam, A., Farooq, H., & Ahmad, S. (2019a). Flood hazard assessment of the Kashmir Valley using historical hydrology. Journal of Flood Risk Management, 12, e12521. https://doi.org/10.1111/jfr3.12521

    Article  Google Scholar 

  • Bhat, M. S., Alam, A., Ahmad, B., Kotlia, B. S., Farooq, H., Taloor, A. K., & Ahmad, S. (2019b). Flood frequency analysis of river Jhelum in Kashmir basin. Quaternary International, 507, 288–294. https://doi.org/10.1016/j.quaint.2018.09.039

    Article  Google Scholar 

  • Bhat, M. S., Bhat, M. S., & Ahmad, P. (2006). Temperature variability in Kashmir: A spatio-temporal analysis. The Geographer, 53(1), 98–103.

    Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85(1–2), 159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2008). Changing streamflow patterns in the rivers of northwestern Himalaya: implications of global warming in the 20th century. Current Science, 95, 618–626.

    Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2010). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology, 30, 535–548.

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    Article  CAS  Google Scholar 

  • Campozano, L., Sánchez, E., Avilés, Á., & Samaniego, E. (2014). Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana, 5(1), 99–115. https://doi.org/10.18537/mskn.05.01.07

    Article  Google Scholar 

  • Chu, J. T., Xia, J., Xu, C. Y., & Singh, V. P. (2010). Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River. China. Theoretical and Applied Climatology, 99(1–2), 149–161. https://doi.org/10.1007/s00704-009-0129-6

    Article  Google Scholar 

  • Cook, E. R., Krusic, P. J., & Jones, P. D. (2003). Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(7), 707–732. https://doi.org/10.1002/joc.911

    Article  Google Scholar 

  • Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climate Change, 85(3–4), 299–321. https://doi.org/10.1007/s10584-007-9305-9

    Article  Google Scholar 

  • Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA Journal of the American Water Resources Association, 50(5), 1226–1241. https://doi.org/10.1111/jawr.12182

    Article  Google Scholar 

  • Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3–4), 775–800.

    Article  Google Scholar 

  • Easterling, D. R., Alexander, L. V., Mokssit, A., & Detemmerman, V. (2003). CCI/CLIVAR workshop to develop priority climate indices. Bulletin of the American Meteorological Society, 84(10), 1403–1407. https://doi.org/10.1175/BAMS-84-10-1403

    Article  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science, 289(5487), 2068–2074. https://doi.org/10.1126/science.289.5487.2068

    Article  CAS  Google Scholar 

  • Fang, G., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547–2559.

    Article  Google Scholar 

  • Fischer, E. M., Beyerle, U., & Knutti, R. (2013). Robust spatially aggregated projections of climate extremes. Nature Climate Change, 3(12), 1033–1038. https://doi.org/10.1038/nclimate2051

    Article  Google Scholar 

  • Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic change in the Upper Indus Basin. Journal of Climate, 19(17), 4276–4293. https://doi.org/10.1175/JCLI3860.1

    Article  Google Scholar 

  • Fuka, D. R., Walter, M. T., MacAlister, C., Degaetano, A. T., Steenhuis, T. S., & Easton, Z. M. (2014). Using the climate forecast system reanalysis as weather input data for watershed models. Hydrological Processes, 28(22), 5613–5623.

    Article  Google Scholar 

  • Gujree, I., Wani, I., Muslim, M., Farooq, M., & Meraj, G. (2017). Evaluating the variability and trends in extreme climate events in the Kashmir Valley using PRECIS RCM simulations. Modeling Earth Systems and Environment, 3(4), 1647–1662. https://doi.org/10.1007/s40808-017-0370-4

    Article  Google Scholar 

  • Huang, J., Zhang, J., Zhang, Z., Sun, S., & Yao, J. (2012). Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theoretical and Applied Climatology, 108(3–4), 325–343. https://doi.org/10.1007/s00704-011-0536-3

    Article  Google Scholar 

  • IPCC. (2001). The International Panel for Climate Change (IPCC) Climate Change 2001: TheScientific Basis. In Houghton, J. T. (ed) (Cambridge Univercity Press, Cambridge).

  • IPCC. (2007). Climate Change. The Physical Science Basis. Contributionof Working Group I to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change. In Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller HL (eds). (Cambridge University Press: New York).

  • IPCC. (2013). Climate Change 2013: The physical science basis. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385. https://doi.org/10.1126/science.118318

    Article  CAS  Google Scholar 

  • Karl, T. R., Nicholls, N., & Ghazi, A. (1999). Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. In Weather and climate extremes (pp. 3–7). Springer. https://doi.org/10.1007/978-94-015-9265-9_2

  • Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend analysis of precipitation data in Pieria Region (Greece). European Water, 30(30), 30–40. https://doi.org/10.3390/w9120922

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. Griffin.

    Google Scholar 

  • Klein Tank, A. M. G., Zwiers, F. W., & Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate data and monitoring WCDMP-No. 72, WMO-TD No. 1500, 56 pp.

  • Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., & Sikder, A. B. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research, 111(D16). https://doi.org/10.1007/s00477-012-0615-8

  • Lenderink, G., Buishand, A., & Van Deursen, W. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences, 11(3), 1145–1159.

    Article  Google Scholar 

  • Li, H., Haugen, J. E., & Xu, C. Y. (2018). Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrology and Earth System Sciences, 22(10), 5097–5110. https://doi.org/10.5194/hess-22-5097-2018

    Article  Google Scholar 

  • Mahmood, R., & Babel, M. S. (2014). Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather and Climate Extremes, 5, 56–66. https://doi.org/10.1016/j.wace.2014.09.001

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 124–259.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179–183).

  • Mistry, M. N. (2019). A high-resolution global gridded historical dataset of climate extreme indices. Data, 4(1), 41. https://doi.org/10.3390/data4010041

    Article  Google Scholar 

  • Morak, S., Hegerl, G. C., & Christidis, N. (2013). Detectable changes in the frequency of temperature extremes. Journal of Climate, 26(5), 1561–1574. https://doi.org/10.1175/JCLI-D-11-00678.1

    Article  Google Scholar 

  • Nandargi, S., & Dhar, O. N. (2011). Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrological Sciences Journal, 56(6), 930–945. https://doi.org/10.1080/02626667.2011.595373

    Article  Google Scholar 

  • Otto, F. E., Massey, N., Van Oldenborgh, G. J., Jones, R. G., & Allen, M. R. (2012). Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophysical Research Letters. https://doi.org/10.1029/2011GL050422

    Article  Google Scholar 

  • Peterson, T. C., Taylor, M. A., Demeritte, R., Duncombe, D. L., Burton, S., Thompson, F., ... & Klein Tank, A. (2002). Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research: Atmospheres, 107(D21), ACL-16. doi:https://doi.org/10.1029/2002JD002251

  • Roy, S., & Balling, R. C., Jr. (2004). Trends in extreme daily precipitation indices in India. International Journal of Climatology, 24(4), 457–466. https://doi.org/10.1002/joc.995

    Article  Google Scholar 

  • Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., & Liu, H. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Salami, A. W., Mohammed, A. A., Abdulmalik, Z. H., & Olanlokun, O. K. (2014). Trend analysis of hydro-meteorological variables using the Mann–Kendall trend test: Application to the Niger River and the Benue sub-basins in Nigeria. International Journal of Technology, 5(2), 100–110. https://doi.org/10.14716/ijtech.v5i2.406

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112. https://doi.org/10.3189/172756410791386508

    Article  Google Scholar 

  • Shekhar, M. S., Devi, U., Paul, S., Singh, G. P., & Singh, A. (2017). Analysis of trends in extreme precipitation events over Western Himalaya Region: Intensity and duration wise study. The Journal of Indian Geophysical Union, 21(3), 225–231.

    Google Scholar 

  • Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research, 118(6), 2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  • Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132–140. https://doi.org/10.1016/j.atmosres.2011.01.005

    Article  Google Scholar 

  • Tao, H., Gemmer, M., Bai, Y., Su, B., & Mao, W. (2011). Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? Journal of Hydrology, 400(1–2), 1–9. https://doi.org/10.1016/j.jhydrol.2011.01.016

    Article  Google Scholar 

  • Trenberth, K. E. (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. In Weather and Climate Extremes (pp. 327–339). Springer, Dordrecht. https://doi.org/10.1023/A:1005488920935

  • Trenberth, K. E. (2011). Attribution of climate variations and trends to human influences and natural variability. Wiley Interdisciplinary Reviews, 2(6), 925–930. https://doi.org/10.1002/wcc.142

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vincent, L. A., Zhang, X., Mekis, É., Wan, H., & Bush, E. J. (2018). Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmosphere-Ocean, 56(5), 332–349. https://doi.org/10.1080/07055900.2018.1514579

    Article  Google Scholar 

  • Wang, X. L. (2008a). Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 2423–2444.

    Article  Google Scholar 

  • Wang, X. L. (2008b). Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. Journal of Atmospheric and Oceanic Technology, 25(3), 368–384. https://doi.org/10.1175/2007/JTECHA982.1

    Article  Google Scholar 

  • Wang, X. L., Chen, H., Wu, Y., Feng, Y., & Pu, Q. (2010). New techniques for detection and adjustment of shifts in daily precipitation data series. Journal of Applied Meteorology, 49(12), 2416–2436. https://doi.org/10.1175/2010JAMC2376.1

    Article  CAS  Google Scholar 

  • Wang, X. L., & Feng, Y. (2013). RHtestsV4 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada. 28 pp. [Available online at http://etccdi.pacificclimate.org/software.shtml]”

  • Wentz, F. J., Ricciardulli, L., Hilburn, K., & Mears, C. (2007). How much more rain will global warming bring? Science, 317(5835), 233–235. https://doi.org/10.1126/science.1140746

    Article  CAS  Google Scholar 

  • WMO. (2012). Standardized precipitation index user guide.

  • World Meteorological Organization (WMO) and Global Water Partnership (GWP). (2016). Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2, Geneva.

  • Yadav, R. R., Park, W. K., Singh, J., & Dubey, B. (2004). Do the western Himalayas defy global warming? Geophysical Research Letters. https://doi.org/10.1029/2004GL020201

    Article  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhan, Y. J., Ren, G. Y., Shrestha, A. B., Rajbhandari, R., Ren, Y. Y., Sanjay, J., & Wang, S. (2017). Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Advances in Climate Change Research, 8(3), 166–175.

    Article  Google Scholar 

  • Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., & Albert, P. (2005). Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research, 110(D22). https://doi.org/10.1029/2005JD006181

  • Zhang, X., Hegerl, G., Zwiers, F. W., & Kenyon, J. (2005b). Avoiding inhomogeneity in percentile-based indices of temperature extremes. Journal of Climate, 18, 1641–1651.

    Article  Google Scholar 

  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews, 2(6), 851–870.

    Google Scholar 

Download references

Acknowledgements

The acknowledgements are due to the Indian Meteorological Department (IMD), Srinagar, and National Data Centre, Pune, for necessary meteorological data. The authors would like to thank the developers of—CFSR data and ClimPACT2 for keeping the data and software in public domain. The authors would also like to thank the funding agency University Grants Commission, New Delhi under CPEPA scheme. We are also thankful to the reviewers and editors of the journal for their comments that helped us improving the quality and the structure of the paper.

Funding

The research has been funded by University Grants Commission, New Delhi, under CPEPA scheme being currently carried out at University of Kashmir, Srinagar-190006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, S., Bhat, M.S., Alam, A. et al. Assessment of trends in climatic extremes from observational data in the Kashmir basin, NW Himalaya. Environ Monit Assess 193, 649 (2021). https://doi.org/10.1007/s10661-021-09439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09439-7

Keywords