Skip to main content

Advertisement

Log in

High-altitude meteorology of Indian Himalayan Region: complexities, effects, and resolutions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Himalaya, by virtue of its location and stupendous height, acts as a great climatic divide and regulates meteorological conditions in the subcontinent regions of South Asia. However, the associated complexities and their effects are yet to be resolved to understand the meteorology of the Indian Himalayan Region (IHR). In this review volume, we synthesize the results and inferences of several studies carried out in the IHR using in situ data, remotely sensed data, and model-based meteorological observations. Results provide insights into climate change, scientific gaps, and their causes in deciphering meteorological observations from the last century to recent decades and envisage impacts of climate change on water reservoirs in the future. Warming trend of air temperature, in contrast to global temperature, has been projected in recent decades (after 1990) with a greater warming rate in the maximum temperature than the minimum temperature. This drifting of air temperature from the beginning of last century accelerates the diurnal temperature range of the Himalayas. An elevation-dependent warming trend is mostly perceived in the northwest Himalayan region, implicating an increased warming rate in the Greater Himalaya as compared to the lower and Karakoram Himalaya. No definite trends of precipitation have been observed over different regions of the IHR, suggesting heterogeneous cryosphere-climate interaction between western and central Himalaya. In this review, we have tried to emphasize to the scientific community and policy-makers for enhancing the knowledge of physical and dynamical processes associated with meteorological parameters in the Himalayan terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Azam, M. F., Ramanathan, A. L., Wagnon, P., Vincent, C., Linda, A., Berthier, E., ... & Pottakkal, J. G. (2016). Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India. Annals of Glaciology, 57(71), 328-338.

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A., & Pottakkal, J. G. (2014). Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere, 8(6), 2195–2217.

    Article  Google Scholar 

  • Baines, P. G., & Folland, C. K. (2007). Evidence for a rapid global climate shift across the late 1960s. Journal of Climate, 20(12), 2721–2744.

    Article  Google Scholar 

  • Baral, D. J., & Gupta, R. P. (1997). Integration of satellite sensor data with DEM for the study of snow cover distribution and depletion pattern. International Journal of Remote Sensing, 18(18), 3889–3894.

    Article  Google Scholar 

  • Barry, R. G., & Chorley, R. J. (2009). Atmosphere, weather and climate. Routledge.

    Book  Google Scholar 

  • Bashir, F., Zeng, X., Gupta, H., & Hazenberg, P. (2017). A hydrometeorological perspective on the Karakoram anomaly using unique valley-based synoptic weather observations. Geophysical Research Letters, 44(20), 10–470.

    Article  Google Scholar 

  • Basistha, A., Arya, D. S., & Goel, N. K. (2009). Analysis of historical changes in rainfall in the Indian Himalayas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(4), 555–572.

    Article  Google Scholar 

  • Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., & Wiseman, S. (2012). Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1–2), 156–174.

    Article  Google Scholar 

  • Bhambri, R., Mehta, M., Dobhal, D. P., Gupta, A. K., Pratap, B., Kesarwani, K., & Verma, A. (2016). Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: A remote sensing and ground-based assessment. Natural Hazards, 80(3), 1801–1822.

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85(1–2), 159–177.

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2010). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(4), 535–548.

    Article  Google Scholar 

  • Blandford, T. R., Humes, K. S., Harshburger, B. J., Moore, B. C., Walden, V. P., & Ye, H. (2008). Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin. Journal of Applied Meteorology and Climatology, 47(1), 249–261.

    Article  Google Scholar 

  • Blanford, H. F. (1884). II. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proceedings of the Royal Society of London, 37(232–234), 3–22.

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    Article  CAS  Google Scholar 

  • Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters, 33(8).

  • Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3).

  • Borgaonkar, H. P., Ram, S., & Sikder, A. B. (2009). Assessment of tree-ring analysis of high-elevation Cedrus deodara D. Don from Western Himalaya (India) in relation to climate and glacier fluctuations. Dendrochronologia, 27(1), 59–69.

  • Chalise, S. R., & Khanal, N. R. (2001). Rainfall and related natural disasters in Nepal. Landslide hazards, mitigation to the Hindukush-Himalayas. ICIMOD, Kathmandu, 63–70.

  • Chase, T. N., Knaff, J. A., Pielke, R. A., & Kalnay, E. (2003). Changes in global monsoon circulations since 1950. Natural Hazards, 29(2), 229–254.

    Article  Google Scholar 

  • Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., & Bush, A. B. G. (2013). High-resolution interactive modelling of the mountain glacier-atmosphere interface: An application over the Karakoram. The Cryosphere, 7(3), 779.

    Article  Google Scholar 

  • Collins, D. N., Davenport, J. L., & Stoffel, M. (2013). Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Science of the Total Environment, 468, S48–S59.

    Article  CAS  Google Scholar 

  • Das, A. K., Sah, R. K., & Hazarika, N. (2012). Bankline change and the facets of riverine hazards in the floodplain of Subansiri-Ranganadi Doab, Brahmaputra Valley, India. Natural Hazards, 64(2), 1015–1028.

    Article  Google Scholar 

  • Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change, 85(3–4), 299–321.

    Article  Google Scholar 

  • De Scally, F. A. (1997). Deriving lapse rates of slope air temperature for meltwater runoff modeling in subtropical mountains: An example from the Punjab Himalaya, Pakistan. Mountain Research and Development, 353–362.

  • Dey, B., & Kumar, O. B. (1983). Himalayan winter snow cover area and summer monsoon rainfall over India. Journal of Geophysical Research: Oceans, 88(C9), 5471–5474.

    Article  Google Scholar 

  • Dimri, A. P., & Dash, S. K. (2010). Winter temperature and precipitation trends in the Siachen Glacier. Current science, 1620–1625.

  • Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111(3–4), 775–800.

    Article  Google Scholar 

  • Dimri, A. P., Kumar, D., Choudhary, A., & Maharana, P. (2018). Future changes over the Himalayas: Mean temperature. Global and Planetary Change, 162, 235–251.

    Article  Google Scholar 

  • Diodato, N., Bellocchi, G., & Tartari, G. (2012). How do Himalayan areas respond to global warming? International Journal of Climatology, 32(7), 975–982.

    Article  Google Scholar 

  • Dobhal, D. P., Gupta, A. K., Manish, M., & Khandelwal, D. D. (2013). Kedarnath disaster: Facts and plausible causes. Current Science, 105(2), 171–174.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya. India. Bull. Glaciol. Res, 25, 9–17.

    Google Scholar 

  • Duan, A., & Xiao, Z. (2015). Does the climate warming hiatus exist over the Tibetan Plateau? Scientific Reports, 5(1), 1–9.

  • Fausto, R. S., van As, D., Box, J. E., Colgan, W., & Langen, P. L. (2016). Quantifying the surface energy fluxes in south Greenland during the 2012 high melt episodes using in-situ observations. Frontiers in Earth Science, 4, 82.

    Article  Google Scholar 

  • Fowler, H. J., & Archer, D. R. (2006). Conflicting signals of climatic change in the Upper Indus Basin. Journal of Climate, 19(17), 4276–4293.

    Article  Google Scholar 

  • Fujita, K. (2008). Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth and Planetary Science Letters, 276(1–2), 14–19.

    Article  CAS  Google Scholar 

  • Fujita, K., & Ageta, Y. (2000). Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. Journal of Glaciology, 46(153), 244–252.

    Article  Google Scholar 

  • Fujita, K., & Sakai, A. (2014). Modelling runoff from a Himalayan debris-covered glacier. Hydrology and Earth System Sciences, 18(7), 2679–2694.

    Article  Google Scholar 

  • Gaddam, V. K., Sharma, P., Patel, L. K., Thamban, M., & Singh, A. (2016). Spatio-temporal changes observed in supra-glacial debris cover in Chenab Basins, Western Himalaya. In Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges (Vol. 9878, p. 98781F). International Society for Optics and Photonics.

  • Garg, P. K., Yadav, J. S., Rai, S. K., & Shukla, A. (2021). Mass balance and morphological evolution of the Dokriani Glacier, central Himalaya, India during 1999–2014. Geoscience Frontiers, 101290.

  • Gautam, R., Hsu, N. C., & Lau, K. M. (2010). Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. Journal of Geophysical Research: Atmospheres, 115(D17).

  • Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(11), 1453–1469.

    Article  Google Scholar 

  • Gurung, D. R., Kulkarni, A. V., Giriraj, A., Aung, K. S., Shrestha, B., & Srinivasan, J. (2011). Changes in seasonal snow cover in Hindu Kush-Himalayan region. The Cryosphere Discussions, 5(2), 755–777.

    Google Scholar 

  • Gusain, H. S., Kala, M., Ganju, A., Mishra, V. D., & Snehmani. (2015). Observations of snow–meteorological parameters in Gangotri glacier region. Current Science, 2116–2120.

  • Hahn, D. G., & Shukla, J. (1976). An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. Journal of the Atmospheric Sciences, 33(12), 2461–2462.

    Article  Google Scholar 

  • Hatwar, H. R., Yadav, B. P., & Rao, Y. R. (2005). Prediction of western disturbances and associated weather over Western Himalayas. Current science, 913–920.

  • Hewitt, K. (2005). The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mountain Research and Development, 25(4), 332–340.

    Article  Google Scholar 

  • Hock, R., & Holmgren, B. (2005). A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. Journal of Glaciology, 51(172), 25–36.

    Article  Google Scholar 

  • Immerzeel, W. (2008). Historical trends and future predictions of climate variability in the Brahmaputra basin. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(2), 243-254.

  • Immerzeel, W. W., Droogers, P., De Jong, S. M., & Bierkens, M. F. P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1), 40–49.

    Article  Google Scholar 

  • Immerzeel, W. W., Pellicciotti, F., & Bierkens, M. F. P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 6(9), 742–745.

    Article  CAS  Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382–1385.

    Article  CAS  Google Scholar 

  • Immerzeel, W. W., Wanders, N., Lutz, A., Shea, J. M., & Bierkens, M. F. P. (2015). Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 19(11), 4673–4687.

    Article  Google Scholar 

  • IPCC 2007. Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

  • Jain, S. K., Goswami, A., & Saraf, A. K. (2009). Role of elevation and aspect in snow distribution in Western Himalaya. Water Resources Management, 23(1), 71–83.

    Article  Google Scholar 

  • Jain, S. K., Singh, P., Saraf, A. K., & Seth, S. M. (2003). Estimation of sediment yield for a rain, snow and glacier fed river in the Western Himalayan region. Water Resources Management, 17(5), 377–393.

    Article  Google Scholar 

  • Jhajharia, D., & Singh, V. P. (2011). Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. International Journal of Climatology, 31(9), 1353–1367.

    Article  Google Scholar 

  • Joshi, P., & Ganju, A. (2012). Maximum and minimum temperature prediction over western Himalaya using artificial neural network. Mausam, 63(2), 283-290.

  • Joshi, R., Kumar, K., & Palni, L. M. S. (Eds.). (2015). Dynamics of climate change and water resources of northwestern Himalaya. Springer International Publishing.

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  CAS  Google Scholar 

  • Karakoti, I., Kesarwani, K., Mehta, M., & Dobhal, D. P. (2017). Modelling of meteorological parameters for the Chorabari Glacier valley, Central Himalaya, India. Current Science, 112(7), 1553.

    Article  Google Scholar 

  • Kaser, G., Großhauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, 107(47), 20223–20227.

    Article  CAS  Google Scholar 

  • Kennett, E. J., & Toumi, R. (2005). Himalayan rainfall and vorticity generation within the Indian summer monsoon. Geophysical research letters, 32(4).

  • Kesarwani, K., Pratap, B., Bhambri, R., Mehta, M., Kumar, A., Karakoti, I., & Dobhal, D. P. (2012). Meteorological observations at Chorabari and Dokriani glaciers, Garhwal Himalaya, India. Journal Inddustry Geological Congress, 4(1), 125–128.

    Google Scholar 

  • Khandelwal, D. D., Gupta, A. K., & Chauhan, V. (2015). Observations of rainfall in Garhwal Himalaya, India during 2008–2013 and its correlation with TRMM data. Current Science, 1146–1151.

  • Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the upper Indus River basin in Pakistan. Climate Research, 46(2), 103–119.

    Article  Google Scholar 

  • Klok, E. J., & Oerlemans, J. (2004). Climate reconstructions derived from global glacier length records. Arctic, Antarctic, and Alpine Research, 36(4), 575–583.

    Article  Google Scholar 

  • Kothawale, D. R., & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters, 32(18).

  • Kothyari, U. C., Singh, V. P., & Aravamuthan, V. (1997). An investigation of changes in rainfall and temperature regimes of the Ganga Basin in India. Water Resources Management, 11(1), 17–34.

    Article  Google Scholar 

  • Kour, R., Patel, N., & Krishna, A. P. (2016). Assessment of temporal dynamics of snow cover and its validation with hydro-meteorological data in parts of Chenab Basin, western Himalayas. Science China Earth Sciences, 59(5), 1081–1094.

    Article  Google Scholar 

  • Kripalani, R. H., & Kulkarni, A. (1997). Rainfall variability over South–east Asia—connections with Indian monsoon and ENSO extremes: New perspectives. International Journal of Climatology: A Journal of the Royal Meteorological Society, 17(11), 1155–1168.

    Article  Google Scholar 

  • Kripalani, R. H., Kulkarni, A., & Sabade, S. S. (2003). Western Himalayan snow cover and Indian monsoon rainfall: A re-examination with INSAT and NCEP/NCAR data. Theoretical and Applied Climatology, 74(1), 1–18.

    Article  Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current science, 69–74.

  • Kumar, A., Dixit, S., Ram, T., Yadaw, R. B., Mishra, K. K., & Mandal, N. P. (2014). Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65(21), 6265–6278.

    Article  CAS  Google Scholar 

  • Kumar, P., Saharwardi, M. S., Banerjee, A., Azam, M. F., Dubey, A. K., & Murtugudde, R. (2019). Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram. Scientific Reports, 9(1), 1–9.

    Article  Google Scholar 

  • Kumar, V., Singh, P., & Jain, S. K. (2005). Rainfall trends over Himachal Pradesh, Western Himalaya, India. In Conference on Development of Hydro Power Projects–A Prospective Challenge, Shimla (Vol. 20, p. 22).

  • Kumari Padma, B., Londhe, A. L., Daniel, S., & Jadhav, D. B. (2007). Observational evidence of solar dimming: Offsetting surface warming over India. Geophysical Research Letters, 34(21).

  • Li, X., Jing, Y., Shen, H., & Zhang, L. (2019). The recent developments in cloud removal approaches of MODIS snow cover product. Hydrology and Earth System Sciences, 23(5), 2401–2416.

    Article  Google Scholar 

  • Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14), 1729–1742.

    Article  Google Scholar 

  • Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. P. (2014). Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587–592.

    Article  Google Scholar 

  • Marshall, S. J., & Losic, M. (2011). Temperature lapse rates in glacierized basins. Encyclopedia of Snow, Ice and Glaciers, 1145–1150.

  • Marshall, S. J., Sharp, M. J., Burgess, D. O., & Anslow, F. S. (2007). Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(3), 385–398.

    Article  Google Scholar 

  • Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., & Orlikowski, D. (2010). Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10(10), 4559–4571.

    Article  CAS  Google Scholar 

  • Mir, R. A., Jain, S. K., Saraf, A. K., & Goswami, A. (2015a). Accuracy assessment and trend analysis of MODIS-derived data on snow-covered areas in the Sutlej basin, Western Himalayas. International Journal of Remote Sensing, 36(15), 3837–3858.

    Article  Google Scholar 

  • Mir, R. A., Jain, S. K., Saraf, A. K., & Goswami, A. (2015b). Decline in snowfall in response to temperature in Satluj basin, western Himalaya. Journal of Earth System Science, 124(2), 365–382.

    Article  CAS  Google Scholar 

  • Moore, G. W. K. (2004). Mount Everest snow plume: A case study. Geophysical research letters, 31(22).

  • Mukhopadhyay, B., & Khan, A. (2014). A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 509, 549–572.

    Article  Google Scholar 

  • Mukhopadhyay, B., & Khan, A. (2015). A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 527, 119–132.

    Article  Google Scholar 

  • Nair, U. S., Lawton, R. O., Welch, R. M., & Pielke Sr, R. A. (2003). Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research: Atmospheres, 108(D7).

  • Negi, H. S., Shekhar, M. S., Gusain, H. S., & Ganju, A. (2018). Winter climate and snow cover variability over north-west Himalaya. In Science and Geopolitics of The White World (pp. 127–142). Springer, Cham.

  • Negi, H. S., Singh, S. K., Kulkarni, A. V., & Semwal, B. S. (2010). Field-based spectral reflectance measurements of seasonal snow cover in the Indian Himalaya. International Journal of Remote Sensing, 31(9), 2393–2417.

    Article  Google Scholar 

  • Negi, H. S., Thakur, N. K., & Ganju, A. (2012). Monitoring of Gangotri glacier using remote sensing and ground observations. Journal of earth system science, 121(4), 855-866.

  • New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research, 21(1), 1–25.

    Article  Google Scholar 

  • Oerlemans, J. (2000). Holocene glacier fluctuations: Is the current rate of retreat exceptional? Annals of Glaciology, 31, 39–44.

    Article  Google Scholar 

  • Palazzi, E., Von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85–100.

    Article  Google Scholar 

  • Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2013). Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto International, 28(4), 311–322.

    Article  Google Scholar 

  • Pant, G. B. (2003). Long-term climate variability and change over monsoon Asia. J. Indian Geophys. Union, 7(3), 125–134.

    Google Scholar 

  • Pant, G. B., Rupa Kumar, K., & Borgaonkar, H. P. (1999). Climate and its long-term variability over the western Himalaya during the past two centuries. The Himalayan environment, 171–184.

  • Pellicciotti, F., Helbing, J., Rivera, A., Favier, V., Corripio, J., Araos, J., & Carenzo, M. (2008). A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity. Hydrological Processes, 22(19), 3980–3997.

    Article  Google Scholar 

  • Petersen, L., & Pellicciotti, F. (2011). Spatial and temporal variability of air temperature on a melting glacier: Atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of Geophysical Research: Atmospheres, 116(D23).

  • Pratap, B., Dobhal, D. P., Bhambri, R., & Mehta, M. (2013). Near-surface temperature lapse rate in Dokriani Glacier catchment, Garhwal Himalaya, India. Himalayan Geology, 34, 183–186.

    Google Scholar 

  • Pratap, B., Dobhal, D. P., Mehta, M., & Bhambri, R. (2015). Influence of debris cover and altitude on glacier surface melting: A case study on Dokriani Glacier, central Himalaya, India. Annals of Glaciology, 56(70), 9–16.

    Article  Google Scholar 

  • Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., & Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111.

    Article  Google Scholar 

  • Ramanathan, V. C. P. J., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. science, 294(5549), 2119–2124.

  • Rathore, B. P., Singh, S. K., Bahuguna, I. M., Brahmbhatt, R. M., Rajawat, A. S., Thapliyal, A., ... & Ajai. (2015). Spatio-temporal variability of snow cover in Alaknanda, Bhagirathi and Yamuna sub-basins, Uttarakhand Himalaya. Current Science, 1375–1380.

  • Rikiishi, K., & Nakasato, H. (2006). Height dependence of the tendency for reduction in seasonal snow cover in the Himalaya and the Tibetan Plateau region, 1966–2001. Annals of Glaciology, 43, 369–377.

    Article  Google Scholar 

  • Rohrer, M., Salzmann, N., Stoffel, M., & Kulkarni, A. V. (2013). Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of the Total Environment, 468, S60–S70.

    Article  CAS  Google Scholar 

  • Sain, K., Kumar, A., Mehta, M., Verma, A., Tiwari, S. K., Garg, P. K., & Sen, K. (2021). A perspective on Rishiganga-Dhauliganga flash flood in the Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Journal of the Geological Society of India, 97(4), 335–338.

    Article  Google Scholar 

  • Sakai, A., Nuimura, T., Fujita, K., Takenaka, S., Nagai, H., & Lamsal, D. (2015). Climate regime of Asian glaciers revealed by Gamdam glacier inventory. The Cryosphere, 9(3), 865.

    Article  Google Scholar 

  • Shafiq, M. U., Ahmed, P., Islam, Z. U., Joshi, P. K., & Bhat, W. A. (2019). Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto International, 34(6), 688–702.

    Article  Google Scholar 

  • Shangguan, D., Liu, S., Ding, Y., Ding, L., Xu, J., & Jing, L. (2009). Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science, 19(6), 727–732.

    Article  Google Scholar 

  • Sharma, S. S., & Ganju, A. (2000). Complexities of avalanche forecasting in Western Himalaya—an overview. Cold Regions Science and Technology, 31(2), 95–102.

    Article  Google Scholar 

  • Sharma, V., Mishra, V. D., & Joshi, P. K. (2012). Snow cover variation and streamflow simulation in a snow-fed river basin of the Northwest Himalaya. Journal of Mountain Science, 9(6), 853–868.

    Article  Google Scholar 

  • Shea, J. M., & Immerzeel, W. W. (2016). An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush-Himalaya. Annals of Glaciology, 57(71), 308–318.

    Article  Google Scholar 

  • Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112.

    Article  Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11(1), 65–77.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786.

    Article  Google Scholar 

  • Sikka, D. R. (1999). Influence of Himalayas and snow cover on the weather and climate of India-A review. The Himalayan Environment, 37–52.

  • Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018). Snow cover variability in North-West Himalaya during last decade. Arabian Journal of Geosciences, 11(19), 1–12.

    Article  Google Scholar 

  • Singh, N., Singhal, M., Chhikara, S., Karakoti, I., Chauhan, P., & Dobhal, D. P. (2020). Radiation and energy balance dynamics over a rapidly receding glacier in the central Himalaya. International Journal of Climatology, 40(1), 400–420.

    Article  Google Scholar 

  • Singh, O., Arya, P., & Chaudhary, B. S. (2013). On rising temperature trends at Dehradun in Doon valley of Uttarakhand, India. Journal of Earth System Science, 122(3), 613–622.

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., & Kumar, N. (2007). Meteorological study for Gangotri Glacier and its comparison with other high-altitude meteorological stations in central Himalayan region. Hydrology Research, 38(1), 59–77.

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., & Kumar, N. (2008). Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas/Modélisation et estimation des différentes composantes de l’écoulement fluviatile du bassin du Glacier Gangotri, Himalaya. Hydrological Sciences Journal, 53(2), 309–322.

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., Ramasastri, K. S., & Kumar, N. (2005). Prevailing weather conditions during summer seasons around Gangotri Glacier. Current Science, 753–760.

  • Singh, S. K., Rathore, B. P., & Bahuguna, I. M. (2014). Snow cover variability in the Himalayan-Tibetan region. International Journal of Climatology, 34(2), 446–452.

    Article  Google Scholar 

  • Singh, S., Kumar, R., Bhardwaj, A., Sam, L., Shekhar, M., Singh, A., & Gupta, A. (2016). Changing climate and glacio-hydrology in Indian Himalayan Region: A review. Wiley Interdisciplinary Reviews: Climate Change, 7(3), 393–410.

    Google Scholar 

  • Singh, J., & Yadav, R. R. (2014). February–June temperature variability in western Himalaya, India, since AD 1455. Quaternary International, 349, 98–104.

  • Snehmani, Bhardwaj, A., Singh, M. K., Gupta, R. D., Joshi, P. K., & Ganju, A. (2015). Modelling the hypsometric seasonal snow cover using meteorological parameters. Journal of spatial science, 60(1), 51-64.

  • Soncini, A., Bocchiola, D., Confortola, G., Bianchi, A., Rosso, R., Mayer, C., & Diolaiuti, G. (2015). Future hydrological regimes in the upper indus basin: A case study from a high-altitude glacierized catchment. Journal of Hydrometeorology, 16(1), 306–326.

    Article  Google Scholar 

  • Sontakke, N. A., Singh, N., & Singh, H. N. (2008). Instrumental period rainfall series of the Indian region (AD 1813–2005): Revised reconstruction, update and analysis. The Holocene, 18(7), 1055–1066.

    Article  Google Scholar 

  • Srivastava, H. N., Dewan, B. N., Dikshit, S. K., Rao, G. P., Singh, S. S., & Rao, K. R. (1992). Decadal trends in climate over India. Mausam, 43(1), 7–20.

    Article  Google Scholar 

  • Steiner, J. F., & Pellicciotti, F. (2016). Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya. Annals of Glaciology, 57(71), 295–307.

    Article  Google Scholar 

  • Subramanian, V. (1993). Sediment load of Indian rivers. Current Science, 928–930.

  • Tahir, A. A., Adamowski, J. F., Chevallier, P., Haq, A. U., & Terzago, S. (2016). Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorology and Atmospheric Physics, 128(6), 793–811.

    Article  Google Scholar 

  • Thayyen, R. J., & Dimri, A. P. (2014). Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya. Cryosphere Discussions, 8(6).

  • Thayyen, R. J., & Gergan, J. T. (2010). Role of glaciers in watershed hydrology: A preliminary study of a" Himalayan catchment". The Cryosphere, 4(1), 115.

    Article  Google Scholar 

  • Thayyen, R. J., Gergan, J. T., & Dobhal, D. P. (2005). Lapse rate of slope air temperature in a Himalayan catchment–A study from Din Gad (Dokriani Glacier) basin, Garhwal Himalaya, India. Bullitin Glaciology Research, 22, 19–25.

    Google Scholar 

  • Thibert, E., Dkengne Sielenou, P., Vionnet, V., Eckert, N., & Vincent, C. (2018). Causes of glacier melt extremes in the Alps since 1949. Geophysical Research Letters, 45(2), 817–825.

    Article  Google Scholar 

  • Wang, B., Bao, Q., Hoskins, B., Wu, G., & Liu, Y. (2008). Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 35(14).

  • Whiteman, C. D. (2000). Mountain meteorology: Fundamentals and applications. Oxford University Press.

  • Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., & Wilkes, A. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23(3), 520–530.

    Article  CAS  Google Scholar 

  • Yadav, J. S., Misra, A., Dobhal, D. P., Yadav, R. B. S., & Upadhyay, R. (2020). Snow cover mapping, topographic controls and integration of meteorological data sets in Din-Gad Basin, Central Himalaya. Quaternary International, 575, 160–177.

    Google Scholar 

  • Yadav, J. S., Pratap, B., Gupta, A. K., Dobhal, D. P., Yadav, R. B. S., & Tiwari, S. K. (2019). Spatio-temporal variability of near-surface air temperature in the Dokriani glacier catchment (DGC), central Himalaya. Theoretical and Applied Climatology, 136(3–4), 1513–1532.

    Article  Google Scholar 

  • Yadav, R. K., Rupa Kumar, K., & Rajeevan, M. (2009). Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. Journal of Geophysical Research: Atmospheres, 114(D12).

  • Yadav, R. R., Park, W. K., Singh, J., & Dubey, B. (2004). Do the western Himalayas defy global warming? Geophysical Research Letters, 31(17).

  • You, Q., Fraedrich, K., Ren, G., Pepin, N., & Kang, S. (2013). Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 33(6), 1337–1347.

    Article  Google Scholar 

  • Zemp, M., Hoelzle, M., & Haeberli, W. (2009). Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Annals of Glaciology, 50(50), 101–111.

    Article  Google Scholar 

  • Zhao, H., & Moore, G. W. K. (2004). On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon. Geophysical Research Letters, 31(14).

  • Zhu, M., Yao, T., Yang, W., Maussion, F., Huintjes, E., & Li, S. (2015). Energy-and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau. Journal of Glaciology, 61(227), 595–607.

Download references

Acknowledgements

The authors express their deep sense of gratitude to the Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun, for providing all necessary facilities and logistic support during the entire period of this study. We are thankful to Dr. Koushik Sen (WIHG) and Ajit Yadav for improving the grammar. This has the WIHG contribution No. WIHG /0095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairam Singh Yadav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, J.S., Tiwari, S.K., Misra, A. et al. High-altitude meteorology of Indian Himalayan Region: complexities, effects, and resolutions. Environ Monit Assess 193, 654 (2021). https://doi.org/10.1007/s10661-021-09418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09418-y

Keywords