Skip to main content
Log in

Ensemble evaluation of the potential risk areas of yellow-legged hornet distribution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Invasion of alien species facilitated by climate change and human assistant is one of global threats that cause irreversible damages on the local flora and fauna. One of these issued species, Vespa velutina nigrithorax du Buysson, 1905 (Hymenoptera:Vespidae), is a significant threat to entomofauna, including honeybees, in the introduced regions. This wasp is still expanding its habitats, prioritizing the development of a reliable species distribution model based on recently updated occurrence data. Therefore, the aim of this study was to evaluate the potential areas that are climatically exposed to V. v. nigrithorax invasion globally and in South Korea, where the wasp has caused severe damage to local ecosystems and apiculture after its recent introduction. We developed a new global scale ensemble model based on CLIMEX and Maxent models and applied it to South Korea using field survey data. As a result, risky areas were predicted to be temperate and subtropical climate regions, including the eastern USA, western Europe, Far East Asia, and small areas in South America and Australia. In particular, South Korea has a high potential risk throughout the country. We expect that this study would provide fundamental data for monitoring the environmental risks caused by V. v. nigrithorax using advanced species distribution modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Afifi, A., May, S., Donatello, R., & Clark, V. A. (2019). Practical multivariate analysis. CRC Press.

    Book  Google Scholar 

  • Alaniz, A. J., Carvajal, M. A., & Vergara, P. M. (2021). Giants are coming? Predicting the potential spread and impacts of the giant Asian hornet (Vespa mandarinia, Hymenoptera: Vespidae) in the USA. Pest Management Science, 77(1), 104–112. https://doi.org/10.1002/ps.6063

    Article  CAS  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Allendorf, F. W., Lundquist, L. L. (2003). Introduction: Population biology, evolution, and control of invasive species. Conservation Biology, 24–30. https://doi.org/10.1046/J.1523-1739.2003.02365.x

  • Arca, M., Mougel, F., Guillemaud, T., Dupas, S., Rome, Q., Perrard, A., Muller, F., Fossoud, A., Capdevielle-Dulac, C., Torres-Leguizamon, M., Chen, X. X., Tan, J. L., Jung, C., Villemant, C., Arnold, G., & Silvain, J. F. (2015). Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina. Europe. Biological Invasions, 17(8), 2357–2371. https://doi.org/10.1007/s10530-015-0880-9

    Article  Google Scholar 

  • Archer, M. E. (1994). Taxonomy, distribution and nesting biology of the Vespa bicolor group (Hym., Vespinae). Entomologist's Monthly Magazine, 130(1560–63), 149–158.

  • Barbet-Massin, M., Rome, Q., Muller, F., Perrard, A., Villemant, C., & Jiguet, F. (2013). Climate change increases the risk of invasion by the Yellow-legged hornet. Biological Conservation, 157, 4–10. https://doi.org/10.1016/j.biocon.2012.09.015

    Article  Google Scholar 

  • Bessa, A. S., Carvalho, J., Gomes, A., & Santarém, F. (2016). Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conservation and Diversity, 9(1), 27–37. https://doi.org/10.1111/icad.12140

    Article  Google Scholar 

  • Blach-Overgaard, A., Svenning, J. C., Dransfield, J., Greve, M., & Balslev, H. (2010). Determinants of palm species distributions across Africa: The relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography, 33(2), 380–391. https://doi.org/10.1111/j.1600-0587.2010.06273.x

    Article  Google Scholar 

  • Brown, J. L. (2014). SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  • Budge, G. E., Hodgetts, J., Jones, E. P., Ostojá-Starzewski, J. C., Hall, J., Tomkies, V., Semmence, N., Brown, M., Wakefield, M., & Stainton, K. (2017). The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS ONE, 12(9), e0185172. https://doi.org/10.1371/journal.pone.0185172

    Article  CAS  Google Scholar 

  • Byeon, D. H., Jung, J. M., Lohumi, S., Cho, B. K., Jung, S., & Lee, W. H. (2017). Predictive analysis of Metcalfa pruinosa (Hemiptera: Flatidae) distribution in South Korea using CLIMEX software. Journal of Asia-Pacific Biodiversity, 10(3), 379–384. https://doi.org/10.1016/j.japb.2017.06.004

    Article  Google Scholar 

  • Byeon, D. H., Jung, S., & Lee, W. H. (2018). Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity, 11(3), 325–333. https://doi.org/10.1016/j.japb.2018.06.002

    Article  Google Scholar 

  • Byeon, D. H., Kim, S. H., Jung, J. M., Jung, S., Kim, K. H., & Lee, W. H. (2021). Climate-based ensemble modelling to evaluate the global distribution of Anoplophora glabripennis (Motschulsky). Agricultural and Forest Entomology. https://doi.org/10.1111/afe.12462

    Article  Google Scholar 

  • CABI (Centre for Agriculture and Bioscience International). (2021). Invasive Species Compendium: Vespa velutina (Asian hornet). Retrieved January 11, 2021, from https://www.cabi.org/isc/datasheet/109164

  • Carpenter, J. M., & Kojima, J. I. (1997). Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). Natural History Bulletin of Ibaraki University, 1, 51–92.

    Google Scholar 

  • Chauzat, M. P., & Martin, S. J. (2009). A foreigner in France: The Asian hornet. Biologist, 56(2), 86.

    Google Scholar 

  • Cho, S. H. (2020, May 10). Yellow-legged hornet, such as invasive species, rapidly increase… 72% of all wasps. Yonhap News Agency. Retrieved December 2, 2020, from https://www.yna.co.kr/view/AKR20200508149500030

  • Choi, M. B., Kim, J. K., & Lee, J. W. (2013). Checklist and distribution of Korean Vespidae revisited. Korean Journal of Applied Entomology, 52(2), 85–91. https://doi.org/10.5656/KSAE.2013.02.1.072

    Article  Google Scholar 

  • Choi, M. B., Martin, S. J., & Lee, J. W. (2012). Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. Journal of Asia-Pacific Entomology, 15(3), 473–477. https://doi.org/10.1016/j.aspen.2011.11.004

    Article  Google Scholar 

  • Climate-data.org. (2021). Classifications. Retrieved January 22, 2021, from https://en.climate-data.org

  • Demichelis, S., Manino, A., Minuto, G., Mariotti, M., & Porporato, M. (2014). Social wasp trapping in north west Italy: Comparison of different bait-traps and first detection of Vespa velutina. Bulletin of Insectology, 67(2), 307–317.

    Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García-Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Duckson, D. W. (1987). Continental climate. In J. E. Oliver, & R. W. Fairbridge (Eds.), The encyclopedia of climatology (1987 edition). Springer. https://doi.org/10.1007/0-387-30749-4_54

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fortuna-Antoszkiewicz, B., Łukaszkiewicz, J., Rosłon-Szeryńska, E., Wysocki, C., & Wiśniewski, P. (2018). Invasive species and maintaining biodiversity in the natural areas–rural and urban–subject to strong anthropogenic pressure. Journal of Ecological Engineering, 19(6), 14–23. https://doi.org/10.12911/22998993/92888

  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press.

  • GBIF.org (Global Biodiversity Information Facility). (2020). GBIF occurrence download. Retrieved May 12, 2020, from https://doi.org/10.15468/dl.cb3sur

  • Gonzalez, V. H., Koch, J. B., & Griswold, T. (2010). Anthidium vigintiduopunctatum Friese (Hymenoptera: Megachilidae): The elusive “dwarf bee” of the Galápagos Archipelago? Biological Invasions, 12(8), 2381–2383. https://doi.org/10.1007/s10530-009-9651-9

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.

  • Haxaire, J., Tamisier, J. P., & Bouguet, J. P. (2006). Vespa velutina Lepeletier, 1836, une redoutable nouveauté pour la faune de France (Hym., Vespidae). Bulletin de la Société Entomologique de France, 111(2), 194–194.

  • Hill, M. P., Axford, J. K., & Hoffmann, A. A. (2014). Predicting the spread of Aedes albopictus in Australia under current and future climates: Multiple approaches and datasets to incorporate potential evolutionary divergence. Austral Ecology, 39(4), 469–478. https://doi.org/10.1111/aec.12105

    Article  Google Scholar 

  • Hinojosa-Díaz, I. A., Feria-Arroyo, T. P., & Engel, M. S. (2009). Potential distribution of orchid bees outside their native range: The cases of Eulaema polychroma (Mocsáry) and Euglossa viridissima Friese in the USA (Hymenoptera: Apidae). Diversity and Distributions, 15(3), 421–428. https://doi.org/10.1111/j.1472-4642.2008.00549.x

    Article  Google Scholar 

  • Hulme, P. E., Nentwig, W., Pyšek, P., & Vila, M. (2009). Handbook of alien species in Europe. Invading nature—Springer series in invasion ecology 3. Springer.

  • Husemann, M., Sterr, A., Maack, S., & Abraham, R. (2020). The northernmost record of the Asian hornet Vespa velutina nigrithorax (Hymenoptera, Vespidae). Evolutionary Systematics, 4(1), 1–4. https://doi.org/10.3897/evolsyst.4.47358

    Article  Google Scholar 

  • Ibáñez-Justicia, A., & Loomans, A. J. (2011). Mapping the potential occurrence of an invasive species by using CLIMEX: Case of the Asian hornet (Vespa velutina nigrithorax) in The Netherlands. Proceedings of the Netherlands Entomological Society Meeting, 22, 39–46.

    Google Scholar 

  • Ishay, J. S. (2004). Hornet flight is generated by solar energy: UV irradiation counteracts anaesthetic effects. Microscopy, 53(6), 623–633. https://doi.org/10.1093/jmicro/dfh077

    Article  Google Scholar 

  • Ishay, J. S., Fuchs, C., & Rosenzweg, E. (1985). Temperature dependence of the electrical resistance of hornet cuticle: A statistical model. Journal of Thermal Biology, 10(3), 137–144. https://doi.org/10.1016/0306-4565(85)90017-8

    Article  Google Scholar 

  • Jung, C. E. (2012). Spatial expansion of an invasive hornet, Vespa velutina nigrithorax Buysson (Hymenoptera: Vespidae) in Korea. Korean Journal of Apiculture, 27(2), 87–93.

    Google Scholar 

  • Jung, J. M., Lee, W. H., & Jung, S. (2016). Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomological Research, 46(4), 223–235. https://doi.org/10.1111/1748-5967.12171

    Article  Google Scholar 

  • Käfer, H., Kovac, H., & Stabentheiner, A. (2012). Resting metabolism and critical thermal maxima of vespine wasps (Vespula sp.). Journal of Insect Physiology, 58(5), 679–689. https://doi.org/10.1016/j.jinsphys.2012.01.015

  • Kim, J. K., Choi, M., & Moon, T. Y. (2006). Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomological Research, 36(2), 112–115. https://doi.org/10.1111/j.1748-5967.2006.00018.x

    Article  Google Scholar 

  • Kriticos, D. J., Maywald, G. F., Yonow, T., Zurcher, E. J., Herrmann, N. I., & Sutherst, R. (2015). Exploring the effects of climate on plants, animals and diseases. CLIMEX version 4. CSIRO.

  • Kriticos, D. J., Reynaud, P., Baker, R. H. A., & Eyre, D. (2012a). Estimating the global area of potential establishment for the western corn rootworm (Diabrotica virgiferavirgifera) under rain-fed and irrigated agriculture. EPPO Bulletin, 42(1), 56–64. https://doi.org/10.1111/j.1365-2338.2012.02540.x

    Article  Google Scholar 

  • Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012b). CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x

    Article  Google Scholar 

  • Kumar, S., Graham, J., West, A. M., & Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, 55–62. https://doi.org/10.1016/j.compag.2014.02.007

    Article  Google Scholar 

  • Kumar, S., Neven, L. G., Zhu, H., & Zhang, R. (2015). Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108, 1708–1719. https://doi.org/10.1093/jee/tov166

    Article  Google Scholar 

  • Kumar, S., Yee, W. L., & Neven, L. G. (2016). Mapping global potential risk of establishment of Rhagoletis pomonella (Diptera: Tephritidae) using MaxEnt and CLIMEX niche models. Journal of Economic Entomology, 109(5), 2043–2053. https://doi.org/10.1093/jee/tow166

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

    Article  CAS  Google Scholar 

  • Lee, W. H., Jung, J. M., Lee, H. S., Lee, J. H., & Jung, S. (2021). Evaluating the invasion risk of longhorn crazy ants (Paratrechina longicornis) in South Korea using spatial distribution model. Journal of Asia-Pacific Entomology, 24(2), 279–287. https://doi.org/10.1016/j.aspen.2021.01.007

    Article  Google Scholar 

  • Li, B., Ma, J., Hu, X., Liu, H., & Zhang, R. (2009). Potential geographical distributions of the fruit flies Ceratitis capitata, Ceratitis cosyra, and Ceratitis rosa in China. Journal of Economic Entomology, 102(5), 1781–1790. https://doi.org/10.1603/029.102.0508

    Article  Google Scholar 

  • López, S., González, M., & Goldarazena, A. (2011). Vespa velutina Lepeletier, 1836 (Hymenoptera: Vespidae): First records in Iberian Peninsula. EPPO Bulletin, 41(3), 439–441. https://doi.org/10.1111/j.1365-2338.2011.02513.x

    Article  Google Scholar 

  • Lozier, J. D., Strange, J. P., & Koch, J. B. (2013). Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conservation Genetics, 14(5), 1099–1110. https://doi.org/10.1007/s10592-013-0498-3

    Article  Google Scholar 

  • Lu, S. S., Takahashi, J., Yeh, W. C., Lu, M. L., Huang, J. Y., Lin, Y. J., & Sung, I. (2021). Evidence for range expansion and origins of an invasive hornet Vespa bicolor (Hymenoptera, Vespidae) in Taiwan, with notes on its natural status. Insects, 12(4), 320. https://doi.org/10.3390/insects12040320

    Article  Google Scholar 

  • Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Martin, S. J. (1990). Nest thermoregulation in Vespa simillima, V. tropica and V. analis. Ecological Entomology, 15(3), 301–310.

  • Martin, S. J. (1995). Hornets (Hymenoptera: Vespinae) of Malaysia. Malayan Nature Journal (malaysia), 49, 71–82.

    Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A., Jr. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Meyerson, L. A., & Mooney, H. A. (2007). Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment, 5(4), 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2

    Article  Google Scholar 

  • MAFRA (Ministry of Agriculture, Food and Rural Affairs). (2019). Other livestock statistics 2018. Ministry of Agriculture, Food and Rural Affairs.

  • Monceau, K., Bonnard, O., & Thiéry, D. (2014). Vespa velutina: A new invasive predator of honeybees in Europe. Journal of Pest Science, 87(1), 1–16. https://doi.org/10.1007/s10340-013-0537-3

    Article  Google Scholar 

  • Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics, 22, 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002

    Article  Google Scholar 

  • Park, J. J., & Jung, C. (2016). Risk prediction of the distribution of invasive hornet, Vespa velutina nigrothorax in Korea using CLIMEX model. Korean Journal of Apiculture, 31(4), 293.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Perrard, A., Arca, M., Rome, Q., Muller, F., Tan, J., Bista, S., Nugroho, H., Baudoin, R., Baylac, M., Silvain, J. F., Carpenter, J., & Villemant, C. (2014). Geographic variation of melanisation patterns in a hornet species: Genetic differences, climatic pressures or aposematic constraints? PLoS ONE, 9(4), e94162. https://doi.org/10.1371/journal.pone.0094162

    Article  CAS  Google Scholar 

  • Perrard, A., Haxaire, J., Rortais, A., & Villemant, C. (2009). Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Annales De La Société Entomologique De France, 45, 119–127. https://doi.org/10.1080/00379271.2009.10697595

    Article  Google Scholar 

  • Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press.

    Book  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Porporato, M., Lioy, S., & Manino, A. (2019, July). The best management strategy for Vespa velutina in Italy - Action C.2. European Project LIFE14 NAT/IT/001128 STOPVESPA. Retrieved January 11, 2021, from https://www.vespavelutina.eu/Portals/0/Users/152/52/152/LIFE%20STOPVESPA%20-%20The%20Best%20Management%20Strategy.pdf?ver=2019-11-28-160358-667

  • Porporato, M., Manino, A., Laurino, D., & Demichelis, S. (2014). Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment two years after its arrival in Italy. Redia, 97, 189–194.

    Google Scholar 

  • Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O., & del Carmen Seijo-Coello, M. (2019). Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. Journal of Pest Science, 92(2), 557–565. https://doi.org/10.1007/s10340-018-1042-5

    Article  Google Scholar 

  • Rojas-Nossa, S. V., & Calvino-Cancela, M. (2020). The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biological Invasions, 22, 2609–2618. https://doi.org/10.1007/s10530-020-02275-9

    Article  Google Scholar 

  • Rome, Q., Muller, F., Gargominy, O., & Villemant, C. (2009). Bilan 2008 de l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bulletin De La Société Entomologique De France, 114(3), 297–302.

    Google Scholar 

  • Rome, Q., Perrard, A., Muller, F., & Villemant, C. (2011). Monitoring and control modalities of a honeybee predator, the yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Aliens, 31, 7–15.

    Google Scholar 

  • Sakai, Y., & Takahashi, J. (2014). Discovery of a worker of Vespa velutina (Hymenoptera: Vespidae) from Tsushima Island. Japan. Japanese Journal of Entomology, 17(1), 32–36.

    Google Scholar 

  • Silva, D. P., Gonzalez, V. H., Melo, G. A., Lucia, M., Alvarez, L. J., & De Marco Jr, P. (2014). Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecological Modelling, 273, 200–209. https://doi.org/10.1016/j.ecolmodel.2013.11.016

    Article  Google Scholar 

  • Simmons, M. T. (2015). Climates and microclimates: Challenges for extensive green roof design in hot climates. In R. K. Sutton (Eds.), Green roof ecosystems (pp. 63–80). Springer. https://doi.org/10.1007/978-3-319-14983-7_3

  • Smit, J., Noordijk, J., & Zeegers, T. (2018). De opmars van de Aziatische hoornaar (Vespa velutina) naar Nederland. Entomologische Berichten, 78(1), 2–6.

    Google Scholar 

  • Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., Cook, G. L., Edwards, T. C., Jr., Guala, G. F., Howard, T. G., Morisette, J. T., & Hamilton, H. (2019). Development and delivery of species distribution models to inform decision-making. BioScience, 69(7), 544–557. https://doi.org/10.1093/biosci/biz045

    Article  Google Scholar 

  • Stohlgren, T. J., Ma, P., Kumar, S., Rocca, M., Morisette, J. T., Jarnevich, C. S., & Benson, N. (2010). Ensemble habitat mapping of invasive plant species. Risk Analysis: An International Journal, 30(2), 224–235. https://doi.org/10.1111/j.1539-6924.2009.01343.x

    Article  Google Scholar 

  • Strange, J. P., Koch, J. B., Gonzalez, V. H., Nemelka, L., & Griswold, T. (2011). Global invasion by Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae): Assessing potential distribution in North America and beyond. Biological Invasions, 13(9), 2115. https://doi.org/10.1007/s10530-011-0030-y

    Article  Google Scholar 

  • Sutherst, R. W., Maywald, G. F., & Kriticos, D. J. (2007). CLIMEX version 3: User’s guide. Hearne Scientific Software Pty Ltd.

  • Takahashi, J., Okuyama, H., Kiyoshi, T., Takeuchi, T., & Martin, S. J. (2019). Origins of Vespa velutina hornets that recently invaded Iki Island, Japan and Jersey Island. UK. Mitochondrial DNA Part A, 30(3), 434–439. https://doi.org/10.1080/24701394.2018.1538366

    Article  CAS  Google Scholar 

  • Takeuchi, T., Takahashi, R., Kiyoshi, T., Nakamura, M., Minoshima, Y. N., & Takahashi, J. (2017). The origin and genetic diversity of the yellow-legged hornet, Vespa velutina introduced in Japan. Insectes Sociaux, 64(3), 313–320. https://doi.org/10.1007/s00040-017-0545-z

    Article  Google Scholar 

  • Tobeña, M., Prieto, R., Machete, M., & Silva, M. A. (2016). Modeling the potential distribution and richness of cetaceans in the Azores from fisheries observer program data. Frontiers in Marine Science, 3, 202. https://doi.org/10.3389/fmars.2016.00202

    Article  Google Scholar 

  • Villemant, C., Barbet-Massin, M., Perrard, A., Muller, F., Gargominy, O., Jiguet, F., & Rome, Q. (2011a). Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biological Conservation, 144(9), 2142–2150. https://doi.org/10.1016/j.biocon.2011.04.009

    Article  Google Scholar 

  • Villemant, C., Muller, F., Haubois, S., Perrard, A., Darrouzet, E., & Rome, Q. (2011b). Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. Proceedings of the Journée Scientifique Apicole–11 February, 3–12.

  • Wilson, T. M., Takahashi, J., Spichiger, S. E., Kim, I., & van Westendorp, P. (2020). First reports of Vespa mandarinia (Hymenoptera: Vespidae) in North America represent two separate maternal lineages in Washington State, United States, and British Columbia, Canada. Annals of the Entomological Society of America, 113(6), 468–472. https://doi.org/10.1093/aesa/saaa024

    Article  Google Scholar 

  • Yi, Y. J., Cheng, X., Yang, Z. F., & Zhang, S. H. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan. China. Ecological Engineering, 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010

    Article  Google Scholar 

  • Zhang, M. G., Zhou, Z. K., Chen, W. Y., Slik, J. F., Cannon, C. H., & Raes, N. (2012). Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153, 257–264. https://doi.org/10.1016/j.biocon.2012.04.023

    Article  Google Scholar 

Download references

Funding

This work was supported by Korea Environment Industry and Technology Institute (KEITI) through Exotic Invasive Species Management Program, funded by Korea Ministry of Environment (MOE) (2018002270005).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.-H. Kim, and W.-H. Lee; methodology, S.-H. Kim, D.E. Kim, H. Lee, and W.-H. Lee; software, S.-H. Kim; formal analysis, S.-H. Kim; resources, D.E. Kim, and H. Lee; writing—original draft preparation, S.-H. Kim, and W.-H. Lee; writing—review and editing, S.-H. Kim, S. Jung, and W.-H. Lee; visualization, S.-H. Kim; supervision, S. Jung, and W.-H. Lee; funding acquisition, S. Jung, and W.-H. Lee.

Corresponding author

Correspondence to Wang-Hee Lee.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Consent to publish.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Kim, D.E., Lee, H. et al. Ensemble evaluation of the potential risk areas of yellow-legged hornet distribution. Environ Monit Assess 193, 601 (2021). https://doi.org/10.1007/s10661-021-09406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09406-2

Keywords

Navigation